
MATLAB® 7
Desktop Tools and Development Environment



How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Desktop Tools and Development Environment

© COPYRIGHT 1984–2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


Revision History
June 2004 First printing New for MATLAB 7.0 (Release 14). Formerly part of Using

MATLAB.
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online only Revised for MATLAB 7.0.4 (Release 14SP2)
March 2005 Second printing Revised for MATLAB 7.0.4 (Release 14SP2)
June 2005 Third printing Minor revision for MATLAB 7.0.4 (Release 14SP2)
September 2005 Online only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Revised for MATLAB 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online only Revised for MATLAB 7.5 (Release 2007b)
March 2008 Online only Revised for MATLAB 7.6 (Release 2008a)
October 2008 Online only Revised for MATLAB 7.7 (Release 2008b)
March 2009 Online only Revised for MATLAB 7.8 (Release 2009a)
September 2009 Online only Revised for MATLAB 7.9 (Release 2009b)
March 2010 Online only Revised for MATLAB 7.10 (Release 2010a)
March 2010 Online Only Revised for MATLAB 7.10 (Release 2010a)
September 2010 Online only Revised for Version 7.11 (R2010b)





Contents

Startup and Shutdown

1
Starting the MATLAB Program on Windows
Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Associating Files with MATLAB on Windows Platforms . . 1-2

Starting the MATLAB Program on Linux Platforms . . . 1-5

Starting the MATLAB Program on Macintosh
Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6

Startup Error Log Reporter . . . . . . . . . . . . . . . . . . . . . . . . 1-7

Startup Folder for the MATLAB Program . . . . . . . . . . . . 1-8
What Is the Startup Folder? . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Startup Folder on Windows Platforms . . . . . . . . . . . . . . . . 1-9
Startup Folder on Linux Platforms . . . . . . . . . . . . . . . . . . . 1-10
Startup Folder on Macintosh Platforms . . . . . . . . . . . . . . . 1-10
Changing the Startup Folder . . . . . . . . . . . . . . . . . . . . . . . . 1-10

Startup Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14
Specifying MATLAB Startup Options . . . . . . . . . . . . . . . . . 1-14
Commonly Used Startup Options . . . . . . . . . . . . . . . . . . . . 1-16
Passing Perl Variables on Startup . . . . . . . . . . . . . . . . . . . . 1-17
Startup and Calling Java Software from the MATLAB
Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18

Toolbox Path Caching in the MATLAB Program . . . . . . 1-19
About Toolbox Path Caching in the MATLAB Program . . . 1-19
Using the Cache File Upon Startup . . . . . . . . . . . . . . . . . . . 1-19
Updating the Cache and Cache File . . . . . . . . . . . . . . . . . . 1-19
Additional Diagnostics with Toolbox Path Caching . . . . . . 1-22

v



Quitting the MATLAB Program . . . . . . . . . . . . . . . . . . . . . 1-23
Ways to Quit the MATLAB Program . . . . . . . . . . . . . . . . . . 1-23
Confirm Quitting the MATLAB Program . . . . . . . . . . . . . . 1-23
Running a Script When Quitting the MATLAB Program . . 1-24
Abnormal Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24

Desktop

2
Desktop Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
About the Desktop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Summary of Desktop Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

Opening and Arranging Desktop Tools . . . . . . . . . . . . . . 2-5
Opening Desktop Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Navigating Among Desktop Tools and Documents . . . . . . . 2-7
Closing Desktop Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Resizing Desktop Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Moving Tools Within the Desktop . . . . . . . . . . . . . . . . . . . . 2-10
Undocking Tools to Move Them Outside the Desktop . . . . 2-13
Moving Undocked Tools Back onto the Desktop . . . . . . . . . 2-14
Grouping Desktop Tools Together . . . . . . . . . . . . . . . . . . . . 2-14
Maximizing Available Space on the Desktop . . . . . . . . . . . 2-16
Maximizing Tools Within the Desktop . . . . . . . . . . . . . . . . . 2-17
Minimizing Tools Within the Desktop . . . . . . . . . . . . . . . . . 2-17

Opening and Arranging Desktop Documents . . . . . . . . . 2-20
Opening Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Navigating Among Open Documents Using the Document
Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22

Adjusting the Document Bar . . . . . . . . . . . . . . . . . . . . . . . . 2-23
Positioning Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24
Moving and Resizing Documents . . . . . . . . . . . . . . . . . . . . . 2-34
Closing Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34
Moving Documents Outside of the Desktop (Undocking) . . 2-35
Docking Documents and Tools . . . . . . . . . . . . . . . . . . . . . . . 2-36
Grouping Documents in a Tool Outside the Desktop . . . . . 2-36

Managing Desktop Layouts . . . . . . . . . . . . . . . . . . . . . . . . . 2-37

vi Contents



Overview of Desktop Layouts . . . . . . . . . . . . . . . . . . . . . . . . 2-37
Saving a Desktop Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37
Reusing a Saved or Predefined Desktop Layout . . . . . . . . . 2-38
Renaming a Saved Desktop Layout . . . . . . . . . . . . . . . . . . . 2-38
Deleting a Saved Desktop Layout . . . . . . . . . . . . . . . . . . . . 2-39
Restoring the Default Desktop Layout . . . . . . . . . . . . . . . . 2-39

Examples of Desktop Arrangements . . . . . . . . . . . . . . . . . 2-40
About These Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-41
Tool Outside of Desktop and Other Tools Grouped Inside
Desktop Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-41

Maximized Tool in Desktop Example . . . . . . . . . . . . . . . . . 2-43
Minimized Tools in Desktop Example . . . . . . . . . . . . . . . . . 2-44
Tiled Documents in Desktop Example . . . . . . . . . . . . . . . . . 2-48
No Empty Document Tiles Example . . . . . . . . . . . . . . . . . . 2-49
Maximized Documents Outside of the Desktop Example . . 2-52
Floating (Cascaded) Figures in Desktop Example . . . . . . . 2-53
Undocked Tools and Documents Example . . . . . . . . . . . . . . 2-55

Running Frequently Used Statement Groups with
MATLAB Shortcuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-57
What Is a MATLAB Shortcut? . . . . . . . . . . . . . . . . . . . . . . . 2-57
When to Use MATLAB Shortcuts . . . . . . . . . . . . . . . . . . . . 2-57
Creating MATLAB Shortcuts — Tutorials . . . . . . . . . . . . . 2-58
Running MATLAB Shortcuts . . . . . . . . . . . . . . . . . . . . . . . . 2-61
Editing and Organizing MATLAB Shortcuts . . . . . . . . . . . 2-62
Customizing MATLAB Toolbar Shortcuts . . . . . . . . . . . . . . 2-63

Performing Desktop Actions Using the Keyboard . . . . . 2-66
Keyboard Key Combinations . . . . . . . . . . . . . . . . . . . . . . . . 2-66

Performing Desktop Actions Using Keyboard
Shortcuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-69
Overview of Keyboard Shortcuts . . . . . . . . . . . . . . . . . . . . . 2-69
Choosing a Set of Keyboard Shortcuts . . . . . . . . . . . . . . . . . 2-70
Comparing Sets of Keyboard Shortcuts . . . . . . . . . . . . . . . . 2-74
Displaying Keyboard Shortcuts . . . . . . . . . . . . . . . . . . . . . . 2-75
Customizing Keyboard Shortcuts . . . . . . . . . . . . . . . . . . . . . 2-79
Evaluating and Resolving Keyboard Shortcut Conflicts . . . 2-85
Examples of Creating, Modifying, and Deleting Keyboard
Shortcuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-87

Deleting a Set of Keyboard Shortcuts . . . . . . . . . . . . . . . . . 2-90

vii



Using Keyboard Shortcuts Settings Files Created on Other
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-91

Keyboard Shortcut Restrictions . . . . . . . . . . . . . . . . . . . . . . 2-91

Accessing Tools with the Start Button . . . . . . . . . . . . . . . 2-94
Viewing Products and Tools with the Start Button . . . . . . 2-94
Adding Your Own Toolboxes to the Start Button . . . . . . . . 2-96

Using Web Browsers in MATLAB . . . . . . . . . . . . . . . . . . . . 2-101
About Web Browsers in MATLAB . . . . . . . . . . . . . . . . . . . . 2-101
Displaying Pages in Web Browsers . . . . . . . . . . . . . . . . . . . 2-103
Web Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-104

Other Features for Managing the Desktop . . . . . . . . . . . 2-108
Using Menus and Context Menus . . . . . . . . . . . . . . . . . . . . 2-108
Using Toolbar Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-110
Viewing Status in the Status Bar . . . . . . . . . . . . . . . . . . . . 2-111
Sizing, Arranging, and Sorting Columns in Desktop
Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-111

Selecting Multiple Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-113
Cut, Copy, Paste, and Move . . . . . . . . . . . . . . . . . . . . . . . . . 2-114
Printing and Page Setup Options for Desktop Tools . . . . . . 2-115
Accessing MathWorks on the Web . . . . . . . . . . . . . . . . . . . . 2-119

Managing Your Licenses . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-121

Check for Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-123

Specifying Options for MATLAB Using Preferences . . . 2-124
Setting Preferences for MATLAB . . . . . . . . . . . . . . . . . . . . . 2-124
Summary of Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-125
Where MATLAB Stores Preferences . . . . . . . . . . . . . . . . . . 2-126
Preferences Folder and Files MATLAB Uses When Multiple
MATLAB Releases Are Installed . . . . . . . . . . . . . . . . . . . 2-127

Setting General Preferences for the MATLAB
Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-129
General Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-129
MAT-Files Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-131
Confirmation Dialogs Preferences . . . . . . . . . . . . . . . . . . . . 2-132
Source Control Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . 2-136

viii Contents



Java Heap Memory Preferences . . . . . . . . . . . . . . . . . . . . . . 2-136

Customizing the Desktop Using Preferences . . . . . . . . . 2-138
Setting Keyboard Preferences for Desktop Tools . . . . . . . . 2-138
Setting Fonts Preferences for Desktop Tools . . . . . . . . . . . . 2-141
Setting Colors Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . 2-150
Setting Color Preferences for Programming Tools . . . . . . . 2-154
Setting Toolbars Preferences for Desktop Tools . . . . . . . . . 2-156

Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-159
Software Accessibility Support . . . . . . . . . . . . . . . . . . . . . . . 2-159
Documentation Accessibility Support . . . . . . . . . . . . . . . . . 2-160
Assistive Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-161
Installation Notes for Accessibility Support . . . . . . . . . . . . 2-162
Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-165

Macintosh Platform — Differences . . . . . . . . . . . . . . . . . . 2-172
GUI Conventions in the Documentation and Macintosh
Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-172

Pointer Device Instructions and Macintosh Platforms . . . . 2-172
Using File Browser GUIs on Macintosh Platforms to
Navigate Within the MATLAB Root Folder . . . . . . . . . . 2-172

Running Functions — Command Window and
History

3
Using the Command Window . . . . . . . . . . . . . . . . . . . . . . . 3-2
About the Command Window . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Opening the Command Window . . . . . . . . . . . . . . . . . . . . . . 3-2
Using the Command Window Prompt . . . . . . . . . . . . . . . . . 3-3
Changing How the Command Window Looks . . . . . . . . . . . 3-4

Running Functions and Programs, and Entering
Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Running Statements at the Command-Line Prompt . . . . . 3-5
Stopping Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
Running External Programs . . . . . . . . . . . . . . . . . . . . . . . . 3-8

ix



Evaluating or Opening a Selection . . . . . . . . . . . . . . . . . . . . 3-11
Displaying Hyperlinks in the Command Window . . . . . . . . 3-12

Entering Statements in the Command Window . . . . . . . 3-17
Case and Space Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17
Cut, Copy, Paste, and Undo Features . . . . . . . . . . . . . . . . . 3-18
Entering Multiple Lines Without Running Them . . . . . . . . 3-18
Entering Multiple Functions in a Line . . . . . . . . . . . . . . . . 3-20
Entering Multiple-Line (Long) Statements Using Line
Continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20

Recalling Previous Lines in the Command Window . . . . . . 3-21
Navigating Above the Command Line . . . . . . . . . . . . . . . . . 3-22
See Also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22

Assistance While Entering Statements . . . . . . . . . . . . . . . 3-23
Highlighting Syntax to Help Ensure Correct Entries . . . . . 3-23
Matching Delimiters (Parentheses) . . . . . . . . . . . . . . . . . . . 3-24
Completing Statements in the Command Window — Tab
Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24

Viewing Function Syntax Hints While Entering a
Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33

Getting Help for a Function Shown in the Command
Window or Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-38

Finding Functions Using the Function Browser . . . . . . . . . 3-40
See Also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-46

Controlling Output in the Command Window . . . . . . . . 3-47
Echoing Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-47
Suppressing Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-47
Paging of Output in the Command Window . . . . . . . . . . . . 3-47
Formatting and Spacing Numeric Output . . . . . . . . . . . . . . 3-48
Number of Characters in Command Window Display . . . . 3-49
Clearing the Command Window . . . . . . . . . . . . . . . . . . . . . 3-50
Printing Command Window Contents . . . . . . . . . . . . . . . . . 3-50
Keeping a Session Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-51

Finding Text in the Command Window . . . . . . . . . . . . . . 3-52
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-52
Finding Text Currently Displayed in the Command
Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-52

Increasing the Amount of Information Available for
Searching in the Command Window . . . . . . . . . . . . . . . . 3-53

x Contents



Using Incremental Search in the Command Window . . . . . 3-53

Preferences for the Command Window . . . . . . . . . . . . . . 3-60
Text, Display, Accessibility, and Tab Size Preferences . . . . 3-60
Additional Settings That Affect the Command Window . . . 3-64

Using the Command History Window . . . . . . . . . . . . . . . . 3-66
Overview of the Command History Window . . . . . . . . . . . . 3-66
Viewing Statements in the Command History Window . . . 3-68
Performing Actions on Statements in the Command History
Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-68

Searching in the Command History Window . . . . . . . . . . . 3-70
Printing the Command History Window . . . . . . . . . . . . . . . 3-76
Deleting Entries from the Command History Window . . . . 3-76

Preferences for Command History . . . . . . . . . . . . . . . . . . 3-78
Overview of Command History Preferences . . . . . . . . . . . . 3-78
Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-78
Saving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-79
See Also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-80

Getting Help and Product Information

4
Overview of Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

Using the Help Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
About the Help Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Getting Help for Functions and Blocks . . . . . . . . . . . . . . . . 4-8
Accessing a Specific Page . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12
See Also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13

Searching the Documentation . . . . . . . . . . . . . . . . . . . . . . 4-14
Performing a Simple Search . . . . . . . . . . . . . . . . . . . . . . . . . 4-14
Improving Search Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14
Advanced Search Techniques . . . . . . . . . . . . . . . . . . . . . . . . 4-20
Searching Within a Page . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23

xi



Learning from Demos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
About Demos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
Types of Demos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
Accessing Demos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26
Running Demos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26

Configuring the Help Browser . . . . . . . . . . . . . . . . . . . . . . 4-28
Adjusting the Help Browser Layout . . . . . . . . . . . . . . . . . . . 4-28
Specifying Which Documentation to Display . . . . . . . . . . . 4-28
Accessing English Documentation on Japanese Systems . . 4-29
Customizing Help Browser Fonts and Colors . . . . . . . . . . . 4-30
Preferences for Configuring Help Windows, Search History,
and PDF Readers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32

Using Printed Documentation . . . . . . . . . . . . . . . . . . . . . . 4-35
Printing from the Help Browser . . . . . . . . . . . . . . . . . . . . . . 4-35
Accessing and Printing PDF Documentation . . . . . . . . . . . 4-35
Obtaining Printed Manuals . . . . . . . . . . . . . . . . . . . . . . . . . 4-36

Additional Help and Learning Resources . . . . . . . . . . . . 4-37
Obtaining Information About your Installation . . . . . . . . . 4-37
Obtaining Technical Support . . . . . . . . . . . . . . . . . . . . . . . . 4-38
Product Documentation at the MathWorks Web Site . . . . . 4-39
Newsgroup for MathWorks Products . . . . . . . . . . . . . . . . . . 4-40
File Exchange — Files Created By Other Users . . . . . . . . . 4-40
Blogs for MathWorks Products . . . . . . . . . . . . . . . . . . . . . . . 4-40
Newsletters for MathWorks Products . . . . . . . . . . . . . . . . . 4-40
Seminars and Webinars for MathWorks Products . . . . . . . 4-40
Training for MathWorks Products . . . . . . . . . . . . . . . . . . . . 4-41

Customizing Help and Demos

5
Getting Help for Files Created by Others . . . . . . . . . . . . 5-2
About Help for Files Created by Others . . . . . . . . . . . . . . . 5-2
Getting Command-Line Help for Externally Supplied
Program Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

Viewing a Help Summary for Externally Supplied Files . . 5-3
Accessing Help for Externally Supplied Class Files . . . . . . 5-3

xii Contents



Accessing Externally Supplied Documentation in the Help
Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6

Accessing Externally Supplied Demos in the Help
Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7

Providing Your Own Help and Demos . . . . . . . . . . . . . . . 5-8
About Providing Help and Demos . . . . . . . . . . . . . . . . . . . . 5-8
Adding Help for Your Program Files . . . . . . . . . . . . . . . . . . 5-9
Adding HTML Help Files to the Help Browser . . . . . . . . . . 5-17

Adding Demos to the Help Browser . . . . . . . . . . . . . . . . . 5-52
About Creating Demos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-52
Providing Demos to Others . . . . . . . . . . . . . . . . . . . . . . . . . . 5-60

Addressing Validation Errors for info.xml Files . . . . . . 5-61
About XML File Validation . . . . . . . . . . . . . . . . . . . . . . . . . 5-61
Entities Missing or Out of Order in info.xml . . . . . . . . . . . . 5-61
Unrelated info.xml File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-62
Invalid Constructs in info.xml File . . . . . . . . . . . . . . . . . . . 5-62
Outdated info.xml File for a MathWorks Product . . . . . . . . 5-62

Workspace Browser and Variable Editor

6
MATLAB Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
About the Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2
Opening the Workspace Browser . . . . . . . . . . . . . . . . . . . . . 6-2
Viewing and Editing Values in the Current Workspace . . . 6-4
Saving the Current Workspace . . . . . . . . . . . . . . . . . . . . . . 6-5
Viewing and Loading a Saved Workspace and Importing
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7

Changing and Copying Variable Names . . . . . . . . . . . . . . . 6-8
Deleting Workspace Variables . . . . . . . . . . . . . . . . . . . . . . . 6-9
Viewing Base and Function Workspaces Using the
Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9

Creating Plots from the Workspace Browser . . . . . . . . . . . 6-10
Opening Variables and Objects for Viewing and Editing . . 6-21
Setting Workspace Browser Preferences . . . . . . . . . . . . . . . 6-21

xiii



Viewing and Editing Workspace Variables with the
Variable Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-24
About the Variable Editor . . . . . . . . . . . . . . . . . . . . . . . . . . 6-24
Opening the Variable Editor . . . . . . . . . . . . . . . . . . . . . . . . 6-24
Working with Different Types of Data in the Variable
Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-27

Navigating and Editing Shortcut Keys for the Variable
Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-34

Changing Size, Content, and Format of Variables in the
Variable Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-35

Cut, Copy, Paste, and Clear Contents in the Variable
Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-36

Other Variable Editor Operations . . . . . . . . . . . . . . . . . . . . 6-40
Creating Graphs and Variables, and Data Brushing in the
Variable Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-41

Preferences for the Variable Editor . . . . . . . . . . . . . . . . . . . 6-46

Managing Files in MATLAB

7
Introduction to Managing Files in MATLAB . . . . . . . . . . 7-2
Ways to Manage MATLAB Files . . . . . . . . . . . . . . . . . . . . . 7-2
Tools for Managing Files . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2

Understanding File Locations in MATLAB . . . . . . . . . . . 7-4
Important MATLAB Folders . . . . . . . . . . . . . . . . . . . . . . . . 7-4
Path Names in MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7

Working with Files and Folders . . . . . . . . . . . . . . . . . . . . . 7-12
Viewing Folder Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12
Using the Current Folder Browser . . . . . . . . . . . . . . . . . . . 7-18

Finding Files and Folders . . . . . . . . . . . . . . . . . . . . . . . . . . 7-27
Finding Files and Folders by Name in the Current
Folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-27

Simple Search for File and Folder Names in the Current
Folder Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-27

Advanced Search for Files — Find Files Tool . . . . . . . . . . . 7-30

xiv Contents



Locating a File or Folder in the Operating System
Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-34

Finding Files and Folders Using Functions . . . . . . . . . . . . 7-35
Additional Ways to Find Files . . . . . . . . . . . . . . . . . . . . . . . 7-35

Creating, Opening, Changing, and Deleting Files and
Folders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-36
Creating New Files and Folders . . . . . . . . . . . . . . . . . . . . . . 7-36
Copying, Renaming, and Deleting Files and Folders . . . . . 7-42
Opening and Running Files . . . . . . . . . . . . . . . . . . . . . . . . . 7-45

Comparing Files and Folders . . . . . . . . . . . . . . . . . . . . . . . 7-50
Comparing Files and Folders . . . . . . . . . . . . . . . . . . . . . . . . 7-50
Comparing Text Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-52
Comparing Files with Autosave Version or Version on
Disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-56

Comparing MAT-Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-57
Comparing Binary Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-59
Comparing Folders and ZIP Files . . . . . . . . . . . . . . . . . . . . 7-60
Using Features of the Comparison Tool . . . . . . . . . . . . . . . 7-63
Function Alternative for Comparing Files and Folders . . . 7-65

Making Files and Folders Accessible to MATLAB . . . . . 7-66
Files and Folders That MATLAB Can Access . . . . . . . . . . . 7-66
How to Make Files Accessible . . . . . . . . . . . . . . . . . . . . . . . 7-66
Determining if MATLAB Can Access a File . . . . . . . . . . . . 7-68
Ensuring MATLAB Uses the File You Want . . . . . . . . . . . . 7-70

Using the MATLAB Search Path . . . . . . . . . . . . . . . . . . . . 7-72
What Is the Search Path? . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-72
Viewing Files and Folders on the Search Path . . . . . . . . . . 7-74
Changing the Search Path . . . . . . . . . . . . . . . . . . . . . . . . . . 7-75
Using the Search Path with Different MATLAB
Installations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-80

Recovering from Problems with the Search Path . . . . . . . . 7-81
Handling Errors and Unexpected Behavior When Updating
Folders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-83

Related Topics for Managing Files . . . . . . . . . . . . . . . . . . 7-84

xv



File Exchange — Finding and Getting Files
Created by Other Users

8
Before Using File Exchange . . . . . . . . . . . . . . . . . . . . . . . . 8-2
What Is File Exchange? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2
What You Need to Use File Exchange . . . . . . . . . . . . . . . . . 8-2
Ways to Access the File Exchange Repository . . . . . . . . . . . 8-3

How To Use the File Exchange Desktop Tool . . . . . . . . . 8-5
Steps for Using File Exchange . . . . . . . . . . . . . . . . . . . . . . . 8-5
Example — Finding and Downloading a File in File
Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6

Finding Files in File Exchange — Searching and Using
Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-13
About Finding Files in File Exchange . . . . . . . . . . . . . . . . . 8-13
Using Search to Find Files in File Exchange . . . . . . . . . . . 8-13
Finding Files by Product, Author, and Other Attributes in
File Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-14

Using Tags to Find Files in File Exchange . . . . . . . . . . . . . 8-14
Clearing Your Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-26
Getting Better Results Using Search and Tags . . . . . . . . . 8-26

Viewing and Sorting the List of Files in File
Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-28
Viewing the List of Files in File Exchange . . . . . . . . . . . . . 8-28
Sorting the List of Files in File Exchange . . . . . . . . . . . . . . 8-29

Viewing Details About a File . . . . . . . . . . . . . . . . . . . . . . . . 8-30
Viewing the File Details Page . . . . . . . . . . . . . . . . . . . . . . . 8-30
Viewing the Contents of a File . . . . . . . . . . . . . . . . . . . . . . . 8-30

Downloading Files from the File Exchange
Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-32
About Downloading Files . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-32
Downloading from the List of Files . . . . . . . . . . . . . . . . . . . 8-32
Downloading from the File Details Page to a Location You
Choose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-33

The Default Folder for Downloaded Files . . . . . . . . . . . . . . 8-33

xvi Contents



Which Location Should You Choose When Downloading
Files? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-33

Downloading a Submission that Consists of Multiple
Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-34

Viewing and Locating Files You Downloaded . . . . . . . . . . . 8-34

Best Practices for Using Files Provided by Other
Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-37
Ensure MATLAB Can Access the File . . . . . . . . . . . . . . . . . 8-37
Consult the File Details Page . . . . . . . . . . . . . . . . . . . . . . . . 8-37
Look for Updates to the File . . . . . . . . . . . . . . . . . . . . . . . . . 8-37
Read the File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-38
Ask Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-38

Contributing to the File Exchange Repository . . . . . . . 8-39
How You Can Contribute to the Repository . . . . . . . . . . . . 8-39
Adding Tags to a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-39
Removing Tags from a File . . . . . . . . . . . . . . . . . . . . . . . . . . 8-40
Rating a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-40
Providing Comments About a File . . . . . . . . . . . . . . . . . . . . 8-41
Submitting Your Files to the Repository . . . . . . . . . . . . . . . 8-41

Frequently Asked Questions About File Exchange . . . . 8-42
What Is File Exchange? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-42
How Do I Use File Exchange? . . . . . . . . . . . . . . . . . . . . . . . 8-42
How Does the File Exchange Desktop Tool Relate to File
Exchange on the Web Site? . . . . . . . . . . . . . . . . . . . . . . . 8-43

Why Do I See Only 50 Files and How Can I See More? . . . 8-43
What Are Tags and How Do I Use Them? . . . . . . . . . . . . . . 8-44
What Are the Tags Above the List of Files? . . . . . . . . . . . . 8-44
How Can I See Other Tags? . . . . . . . . . . . . . . . . . . . . . . . . . 8-44
Why Are the Tags Changing? . . . . . . . . . . . . . . . . . . . . . . . . 8-45
Is Search Looking Inside Files? . . . . . . . . . . . . . . . . . . . . . . 8-45
How Can I Start Over When Looking for Files? . . . . . . . . . 8-45
How Can I Choose Where to Download a File To? . . . . . . . 8-46
How Do I Contribute My Files to the Repository? . . . . . . . . 8-46

xvii



Editing and Debugging MATLAB Code

9
MATLAB Code Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2
What Are MATLAB Code Files? . . . . . . . . . . . . . . . . . . . . . . 9-2
Creating Files from the Command Window and Command
History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2

Use Existing MATLAB Code and Examples . . . . . . . . . . . . 9-2

Ways to Edit, Evaluate, and Debug Code . . . . . . . . . . . . . 9-4

Starting, Creating Files, and Closing the Editor . . . . . . 9-6
Starting the Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6
Creating New Files in the Editor . . . . . . . . . . . . . . . . . . . . . 9-7
Opening Existing Files Using the Editor . . . . . . . . . . . . . . . 9-9
Arranging Editor Documents . . . . . . . . . . . . . . . . . . . . . . . . 9-11
Closing the Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-11

Customizing the Editor by Setting Preferences . . . . . . . 9-13
Overview of Setting Editor/Debugger Preferences . . . . . . . 9-13
Setting General Preferences for the Editor/Debugger . . . . 9-15
Setting Display Preferences . . . . . . . . . . . . . . . . . . . . . . . . . 9-16
Setting Tab and Indent Preferences . . . . . . . . . . . . . . . . . . 9-19
Setting Language Preferences . . . . . . . . . . . . . . . . . . . . . . . 9-20
Setting MATLAB Language Preferences . . . . . . . . . . . . . . . 9-21
Setting TLC Language Preferences . . . . . . . . . . . . . . . . . . . 9-28
Setting VHDL Language Preferences . . . . . . . . . . . . . . . . . 9-28
Setting Verilog Language Preferences . . . . . . . . . . . . . . . . . 9-29
Setting C/C++ Language Preferences . . . . . . . . . . . . . . . . . 9-30
Setting Java Language Preferences . . . . . . . . . . . . . . . . . . . 9-32
Setting XML/HTML Language Preferences . . . . . . . . . . . . 9-33
Setting Code Folding Preferences . . . . . . . . . . . . . . . . . . . . 9-34
Setting Autosave Preferences . . . . . . . . . . . . . . . . . . . . . . . . 9-35
Additional Information About Editor/Debugger
Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-37

Entering Statements in the Editor . . . . . . . . . . . . . . . . . . 9-38
Using Command Window Features in the Editor . . . . . . . . 9-38
Entering Text in Insert or Overwrite Mode . . . . . . . . . . . . . 9-39
Changing the Case of Selected Text . . . . . . . . . . . . . . . . . . . 9-39
Undoing and Redoing Editor Actions . . . . . . . . . . . . . . . . . . 9-40

xviii Contents



Adding Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-40
Completing Statements in the Editor — Tab Completion . . 9-46

Making MATLAB Code Files More Readable . . . . . . . . . 9-53
Syntax Highlighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-53
Indenting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-53
Function Indenting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-55
Line and Column Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 9-55
Highlight Current Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-55
Right-Side Text Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-56
Class, Function, or Subfunction . . . . . . . . . . . . . . . . . . . . . . 9-57
Code Folding — Expanding and Collapsing File
Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-57

Displaying Two Parts of a File Simultaneously . . . . . . . . . 9-67

Navigating an Open File in the Editor . . . . . . . . . . . . . . . 9-71
Navigating to a Specific Location . . . . . . . . . . . . . . . . . . . . . 9-71
Using Bookmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-75
Navigating Backward and Forward in Files . . . . . . . . . . . . 9-75
Opening a File or Variable from Within a File . . . . . . . . . . 9-76

Finding Text in Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-78
Finding Any Text in the Current File . . . . . . . . . . . . . . . . . 9-78
Finding and Replacing Functions or Variables in the
Current File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-78

Finding and Replacing Any Text . . . . . . . . . . . . . . . . . . . . . 9-80
Finding Text in Multiple File Names or Files . . . . . . . . . . . 9-81
Function Alternative for Finding Text . . . . . . . . . . . . . . . . . 9-82
Performing an Incremental Search in the Editor . . . . . . . . 9-82

Saving, Printing, and Closing Files in the Editor . . . . . 9-83
Saving Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-83
Printing Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-85
Closing Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-86

Running MATLAB Files in the Editor . . . . . . . . . . . . . . . . 9-87
Running Files with No Input Arguments in the Editor . . . 9-87
Using Run Configurations to Run Files with Input
Arguments in the Editor . . . . . . . . . . . . . . . . . . . . . . . . . . 9-88

Create and Use a Run Configuration . . . . . . . . . . . . . . . . . . 9-88
Create and Execute Multiple Run Configurations for a
File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-93

xix



About the run_configurations.m File . . . . . . . . . . . . . . . . . . 9-96
Find Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-96
Remove Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-98
Reassociate and Rename Configurations . . . . . . . . . . . . . . . 9-99
Other Ways to Run Files from the Editor . . . . . . . . . . . . . . 9-103

Finding Errors, Debugging, and Correcting MATLAB
Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-104

Preventing and Identifying Coding Problems . . . . . . . . 9-107
Ways to Prevent and Check for Coding Problems . . . . . . . . 9-107
Code Analysis Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-107
Determining Scope and Usage of Functions and
Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-135

Debugging Process and Features . . . . . . . . . . . . . . . . . . . . 9-141
Ways to Debug MATLAB Files . . . . . . . . . . . . . . . . . . . . . . . 9-141
Preparing for Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-141
Setting Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-144
Running a File with Breakpoints . . . . . . . . . . . . . . . . . . . . . 9-148
Stepping Through a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-150
Examining Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-152
Correcting Problems and Ending Debugging . . . . . . . . . . . 9-158
Using Conditional Breakpoints . . . . . . . . . . . . . . . . . . . . . . 9-166
Breakpoints in Anonymous Functions . . . . . . . . . . . . . . . . . 9-168
Breakpoints in Methods That Overload Functions . . . . . . . 9-169
Error Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-170

Evaluating Subsections of Files Using Code Cells . . . . . 9-175
What Are Code Cells? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-175
Scenarios for Evaluating Sections of Code . . . . . . . . . . . . . 9-176
Process for Evaluating Sections of Files . . . . . . . . . . . . . . . 9-177
Defining Code Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-178
Understanding Nested Code Cells . . . . . . . . . . . . . . . . . . . . 9-185
Navigating Among Code Cells in a File . . . . . . . . . . . . . . . . 9-193
Evaluating Code Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-194

Debugging Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-202

xx Contents



Tuning and Managing MATLAB Code Files

10
Using MATLAB Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2
Refining and Improving Files Using Reports . . . . . . . . . . . 10-2
Identifying Files with Reminder Annotations . . . . . . . . . . . 10-4
Generating a Summary View of the Help Components in
Functions and Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8

Displaying and Updating a Report on the Contents of a
Folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-11

Displaying Dependencies Among MATLAB Code Files . . . 10-15
Identifying How Much of a File Ran When Profiled . . . . . . 10-20

Using the Code Analyzer Report . . . . . . . . . . . . . . . . . . . . 10-22
Running the Code Analyzer Report . . . . . . . . . . . . . . . . . . . 10-22
Changing Code Based on Messages . . . . . . . . . . . . . . . . . . . 10-24
Other Ways to Access Messages . . . . . . . . . . . . . . . . . . . . . . 10-25

Profiling for Improving Performance . . . . . . . . . . . . . . . . 10-27
What Is Profiling? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-27
Profiling Process and Guidelines . . . . . . . . . . . . . . . . . . . . . 10-28
Using the Profiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-30
Profile Summary Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-36
Profile Detail Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-38
The profile Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-46

Publishing MATLAB Code

11
Overview of Publishing MATLAB Code . . . . . . . . . . . . . . 11-2
What Is Meant by Publishing MATLAB Code? . . . . . . . . . . 11-2
Using Code Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2
Process for Publishing MATLAB Code . . . . . . . . . . . . . . . . 11-3
Example of Published MATLAB Code . . . . . . . . . . . . . . . . . 11-4
Adding the Markup for the Example . . . . . . . . . . . . . . . . . . 11-10

Marking Up MATLAB Comments for Publishing . . . . . . 11-17

xxi



Overview of Marking Up MATLAB Comments for
Publishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-18

Creating Document Titles and Introductory Text for
Publishing an Existing File . . . . . . . . . . . . . . . . . . . . . . . 11-19

Specifying Preformatted Text in MATLAB Files for
Publishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-25

Specifying Bulleted or Numbered Lists in MATLAB Files
for Publishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-27

Specifying Graphics in MATLAB Files for Publishing . . . . 11-30
Using HTML Markup Tags in MATLAB Files for
Publishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-34

Using LaTeX Markup for Publishing . . . . . . . . . . . . . . . . . . 11-36
Including Inline LaTeX Math Symbols in MATLAB Files
for Publishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-39

Including Blocks of LaTeX Math Symbols in MATLAB Files
for Publishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-40

Forcing a Snapshot of Output in MATLAB Files for
Publishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-42

Including Bold, Italic, and Monospaced Text in MATLAB
Files for Publishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-43

Including Trademarks in MATLAB Files for Publishing . . 11-45
Including Hyperlinks in MATLAB Files for Publishing . . . 11-46
Cleaning Up Text Markup Before Publishing MATLAB
Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-54

Summary of Markup for Publishing MATLAB Files . . . . . 11-57

Marking Up MATLAB Code for Publishing . . . . . . . . . . . 11-60
Overview of Marking Up MATLAB Code for Publishing . . 11-60
Specifying the Display of Code Output . . . . . . . . . . . . . . . . 11-60
Example of Marking Up Code . . . . . . . . . . . . . . . . . . . . . . . 11-60

Specifying Output Preferences for Publishing . . . . . . . . 11-64
About Publishing Configurations . . . . . . . . . . . . . . . . . . . . . 11-64
Creating a Publish Configuration for a MATLAB File . . . . 11-66
Running an Existing Publish Configuration . . . . . . . . . . . . 11-92
Creating Multiple Publish Configurations for a File . . . . . 11-93
About the publish_configurations.m File . . . . . . . . . . . . . . . 11-104
Finding Publish Configurations . . . . . . . . . . . . . . . . . . . . . . 11-105
Removing Publish Configurations . . . . . . . . . . . . . . . . . . . . 11-105
Reassociating and Renaming Publish Configurations . . . . 11-105

Summary of Options for Presenting Your Code to
Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-106

xxii Contents



Creating a MATLAB Notebook to Publish to
Microsoft Word

12
About MATLAB Notebooks . . . . . . . . . . . . . . . . . . . . . . . . . 12-2
Contents of MATLAB Notebooks . . . . . . . . . . . . . . . . . . . . . 12-2
Creating or Opening a MATLAB Notebook . . . . . . . . . . . . . 12-2
Entering Commands in a MATLAB Notebook . . . . . . . . . . 12-9
Protecting the Integrity of Your Workspace in MATLAB
Notebooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-10

Ensuring Data Consistency in MATLAB Notebooks . . . . . 12-10
Debugging and MATLAB Notebooks . . . . . . . . . . . . . . . . . . 12-11

Defining MATLAB Commands as Input Cells for a
MATLAB Notebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-12
Defining Input Cells for a MATLAB Notebook . . . . . . . . . . 12-12
Defining Cell Groups for a MATLAB Notebook . . . . . . . . . 12-13
Defining Autoinit Input Cells for a MATLAB Notebook . . . 12-14
Defining Calc Zones for a MATLAB Notebook . . . . . . . . . . 12-14
Converting an Input Cell to Text in a MATLAB
Notebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-15

Evaluating MATLAB Commands in a MATLAB
Notebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-17
Evaluating Input Commands . . . . . . . . . . . . . . . . . . . . . . . . 12-17
Evaluating Cell Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-18
Evaluating a Range of Input Cells . . . . . . . . . . . . . . . . . . . . 12-20
Evaluating a Calc Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-20
Evaluating an Entire MATLAB Notebook . . . . . . . . . . . . . . 12-20
Using a Loop to Evaluate Input Cells Repeatedly . . . . . . . 12-21
Converting Output Cells to Text . . . . . . . . . . . . . . . . . . . . . 12-22
Deleting Output Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-22

Printing and Formatting a MATLAB Notebook . . . . . . . 12-23
Printing a MATLAB Notebook . . . . . . . . . . . . . . . . . . . . . . . 12-23
Modifying Styles in the MATLAB Notebook Template . . . . 12-23
Choosing Loose or Compact Format . . . . . . . . . . . . . . . . . . . 12-24
Controlling Numeric Output Format . . . . . . . . . . . . . . . . . . 12-25
Controlling Graphic Output . . . . . . . . . . . . . . . . . . . . . . . . . 12-25

Configuring MATLAB notebook . . . . . . . . . . . . . . . . . . . . . 12-28

xxiii



Notebook Feature Reference . . . . . . . . . . . . . . . . . . . . . . . 12-30
Bring MATLAB to Front . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-30
Define Autoinit Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-31
Define Calc Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-31
Define Input Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-32
Evaluate Calc Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-32
Evaluate Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-33
Evaluate Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-34
Evaluate M-Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-34
Group Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-34
Hide Cell Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-35
Notebook Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-35
Purge Selected Output Cells . . . . . . . . . . . . . . . . . . . . . . . . . 12-35
Toggle Graph Output for Cell . . . . . . . . . . . . . . . . . . . . . . . . 12-36
Undefine Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-36
Ungroup Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-37

Source Control Interface

13
Source Control Interface on Microsoft Windows . . . . . . 13-2

Setting Up the Source Control Interface on Microsoft
Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3
Create Projects in Source Control System . . . . . . . . . . . . . . 13-3
Specify Source Control System with MATLAB Software . . 13-5
Register Source Control Project with MATLAB Software . . 13-7
Add Files to Source Control . . . . . . . . . . . . . . . . . . . . . . . . . 13-10

Checking Files Into and Out of Source Control from the
MATLAB Desktop on Microsoft Windows . . . . . . . . . . 13-11
Check Files Into Source Control . . . . . . . . . . . . . . . . . . . . . . 13-11
Check Files Out of Source Control . . . . . . . . . . . . . . . . . . . . 13-12
Undoing the Checkout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-13

Additional Source Control Actions on Microsoft
Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-14
Getting the Latest Version of Files for Viewing or
Compiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-14

xxiv Contents



Removing Files from the Source Control System . . . . . . . . 13-15
Showing File History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-16
Comparing the Working Copy of a File to the Latest Version
in Source Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-18

Viewing Source Control Properties of a File . . . . . . . . . . . . 13-20
Starting the Source Control System . . . . . . . . . . . . . . . . . . 13-21

Performing Source Control Actions from the Editor,
Simulink, or Stateflow File Menu on Microsoft
Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-23

Troubleshooting Source Control Problems on Microsoft
Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-24
Source Control Error: Provider Not Present or Not Installed
Properly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-24

Restriction Against @ Character . . . . . . . . . . . . . . . . . . . . . 13-25
Add to Source Control Is the Only Action Available . . . . . . 13-25
More Solutions for Source Control Problems . . . . . . . . . . . . 13-25

Source Control Interface on UNIX Platforms . . . . . . . . . 13-26

Specifying the Source Control System on UNIX
Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-27
MATLAB Desktop Alternative . . . . . . . . . . . . . . . . . . . . . . . 13-27
Function Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-28
Setting a View and Checking Out a Folder with ClearCase
Software on UNIX Platforms . . . . . . . . . . . . . . . . . . . . . . 13-29

Checking Files Into the Source Control System on UNIX
Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-30
Checking In One or More Files Using the Current Folder
Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-30

Checking In One File Using the Editor, or the Simulink or
Stateflow Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-31

Function Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-32

Checking Files Out of the Source Control System on
UNIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-33
Checking Out One or More Files Using the Current Folder
Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-33

xxv



Checking Out a Single File Using the Editor, or the
Simulink or Stateflow Products . . . . . . . . . . . . . . . . . . . . 13-34

Function Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-34

Undoing the Checkout on UNIX Platforms . . . . . . . . . . . 13-36
Impact of Undoing a File Checkout . . . . . . . . . . . . . . . . . . . 13-36
Undoing the Checkout for One or More Files Using the
Current Folder Browser . . . . . . . . . . . . . . . . . . . . . . . . . . 13-36

Undoing the Checkout for a Single File Using the Editor, or
the Simulink or Stateflow Products . . . . . . . . . . . . . . . . . 13-36

Function Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-37

Internationalization

14
How the MATLAB Process Uses Locale Settings . . . . . . 14-2
Windows Platform-Specific Behavior . . . . . . . . . . . . . . . . . . 14-3
Macintosh Platform-Specific Behavior . . . . . . . . . . . . . . . . . 14-3

Setting the Locale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-4
Setting Locale on Windows Platforms . . . . . . . . . . . . . . . . . 14-4
Setting Locale on Linux Platforms . . . . . . . . . . . . . . . . . . . . 14-6
Setting Locale on Macintosh Platforms . . . . . . . . . . . . . . . . 14-7

Troubleshooting I18n Messages and Settings . . . . . . . . . 14-9
Asian Characters Incorrectly Displayed on Linux
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-9

Characters Incorrectly Displayed on Windows Systems . . 14-10
datenum Might Not Return Correct Value . . . . . . . . . . . . . 14-10
Numbers Display Period for Decimal Point . . . . . . . . . . . . . 14-10
MATLAB Displays Messages in English . . . . . . . . . . . . . . . 14-11
File or Folder Names Incorrectly Displayed . . . . . . . . . . . . 14-11

Index

xxvi Contents



1

Startup and Shutdown

The way you start the MATLAB® program depends on which platform you
use. The following topics describe how to startup and shutdown MATLAB
software on all supported platforms, with information about how you can
customize startup and shutdown.

• “Starting the MATLAB Program on Windows Platforms” on page 1-1

• “Starting the MATLAB Program on Linux Platforms” on page 1-5

• “Starting the MATLAB Program on Macintosh Platforms” on page 1-6

• “Startup Error Log Reporter” on page 1-7

• “Startup Folder for the MATLAB Program” on page 1-8

• “Startup Options” on page 1-14

• “Toolbox Path Caching in the MATLAB Program” on page 1-19

• “Quitting the MATLAB Program” on page 1-23

Starting the MATLAB Program on Windows Platforms
There are several ways to start the MATLAB program on a Microsoft®

Windows® platform:

• Select Start > Programs > MATLAB > R2010b > MATLAB R2010b.

• Double-click a file with certain file extensions in the Windows Explorer
tool. The installer sets up associations between certain file types and
MathWorks products during installation. For example, double-clicking
a file with a .m extension in the Windows Explorer tool starts MATLAB
and opens the file in the MATLAB Editor. For more information, see
“Associating Files with MATLAB on Windows Platforms” on page 1-2.



1 Startup and Shutdown

• Open the DOS window, cd to the folder in which you want to start MATLAB
and type matlab at the DOS prompt.

• If you chose to have the installer create a shortcut, double-click the
MATLAB shortcut on your Windows desktop.

After starting MATLAB, the desktop opens. Desktop components that were
open when you last shut down MATLAB will be opened on startup. For more
information, see Chapter 2, “Desktop”. You can specify other startup options,
such the current folder upon startup—for more information, see “Startup
Folder for the MATLAB Program” on page 1-8 and “Startup Options” on page
1-14.

If you have trouble starting MATLAB, see troubleshooting information in
the “Troubleshooting”.

Associating Files with MATLAB on Windows Platforms
When you install MATLAB software on Windows platforms, the installer sets
up associations between certain file types and MathWorks products. When
you double-click a particular file type, identified by its file extension, Windows
starts MATLAB and opens the file in the appropriate tool. The following
table lists some of the file extensions the installer associates with MathWorks
products and the behavior that results from this association. To learn how
to change this behavior, see “Managing File Associations for MATLAB on
Windows Systems” on page 1-3.

File Extension and Resulting Action

File
Extension

Result

.fig Opens file in figure window

.m Opens file in Editor

.mat Opens Import Wizard to load the data into the MATLAB
workspace.

.mdl Opens file in a Simulink® model window

1-2



Starting the MATLAB® Program on Windows® Platforms

File Extension and Resulting Action (Continued)

File
Extension

Result

.mex1 Displays icon for MATLAB in Windows Explorer tool

.p Displays icon for MATLAB in Windows Explorer tool

File associations for the Windows Explorer tool do not affect what happens
when you open one of these file types from withinMATLAB. MATLAB acts on
the file using the MATLAB tool associated with that file type. For example,
even if your system associates .mat files with the Access™ application, when
you open a MAT-file from within MATLAB, it opens the Import Wizard to
load the data.

Managing File Associations for MATLAB on Windows Systems
You can associate any file types with MATLAB from the Windows Explorer
tool. For example, you can associate the .xml extension with MATLAB so that
when you double-click an XML file, it opens in the MATLAB Editor.

In addition, you can resolve conflicts with other applications that want
to associate with the same file extension. For example, the Microsoft®

Access™ application might associate files having a .mat extension. Then,
double-clicking a MAT-file opens the Access application rather than MATLAB.

To manage file associations with MATLAB, follow this procedure:

Note These instructions might not exactly apply to your version of the
Windows operating system. If you encounter differences or problems, see
your Windows documentation.

1 Open a Windows Explorer window.

2 Select Tools > Folder Options.

1. MEX-file extensions are platform specific. See “Using Binary MEX-Files”.

1-3



1 Startup and Shutdown

3 Select the File Types tab.

4 Browse the list of file types and select the file extension you want to
associate with MATLAB. If you do not see the extension in the list, click
New to add it. For example, select the MAT file extension.

5 In the Details for ’MAT’ extension area of the dialog box, click Change.

6 Select MATLAB from the list of programs and click OK.

If the list does not include MATLAB, click Browse to select the MATLAB
executable file and then click Open. The MATLAB executable file
(matlab.exe) is located in the bin folder of your MATLAB installation
folder, for example, C:\Program Files\MATLAB\R2010b\bin\win32.

If you want to specify what will be when you double-click on a file with a
particular extension, click the Advanced button.

7 Click Close to close the Folder Options dialog box.

After associating a file type with MATLAB, you can open other applications
that have the same extension via the context menu. For example, if you want
to open a MAT-file with the Access application, right-click myfile.mat, and
from the context menu, select Open With. The Access application should
be one of the options.

Utilities to Set Up File Associations on Windows Platforms
If you are viewing this topic in the MATLAB Help browser, you can run one of
the utilities provided here to create associations in the Windows environment
for common file types used by MATLAB. This requires you to have permission
to write to the HKEY_CLASSES_ROOT registry key, which typically requires
power user or administrator privileges.

• Run utility to associate files with .fig extension with MATLAB

• Run utility to associate files with .m extension with MATLAB

• Run utility to associate files with .mat extension with MATLAB

• Run utility to associate files with .mdl extension with MATLAB

• Run utility to associate MATLAB with MEX-files

1-4



Starting the MATLAB® Program on Linux® Platforms

• Run utility to associate MATLAB with P-files

• Run utility to associate MATLAB with all of these file types: FIG, M, MAT,
MDL, MEX, and P

The file type icon in the Windows Explorer tool might not reflect the change
immediately.

Starting the MATLAB Program on Linux Platforms
To start the MATLAB program on Linux® platforms, type matlab at the
operating system prompt.

If you did not set up symbolic links in the installation procedure, you must
enter the full pathname to start MATLAB, matlabroot/bin/matlab, where
matlabroot is the name of the folder in which you installed MATLAB.

After starting MATLAB, the desktop opens. Desktop components that were
open when you last shut down MATLAB will be opened on startup. For more
information, see Chapter 2, “Desktop”. If the DISPLAY environment variable is
not set or is invalid, the desktop will not display.

If you have trouble starting MATLAB, see troubleshooting information in
the “Troubleshooting”.

You can specify the current folder upon startup as well as other options—for
more information, see “Startup Folder for the MATLAB Program” on page 1-8
and “Startup Options” on page 1-14.

1-5



1 Startup and Shutdown

Starting the MATLAB Program on Macintosh Platforms
There are several ways to start the MATLAB program on a Microsoft
Windows platform:

• Double-click the MATLAB icon in the Applications folder.

• Open a Terminal window, navigate to your MATLAB installation folder,
and type matlab at the operating system prompt.

/Applications/MATLAB_R2010b.app/bin/matlab

If MATLAB fails to start due to a problem with required system components
such as X11 or Sun Microsystems™ Java™ software, diagnostics run
automatically and advise you of the problem, along with suggestions to
correct it.

After starting MATLAB, the desktop opens. Desktop components that were
open when you last shut down MATLAB will be opened on startup. For more
information, see Chapter 2, “Desktop”. If the DISPLAY environment variable is
not set or is invalid, the desktop will not display.

If you have trouble starting MATLAB, see troubleshooting information in
the “Troubleshooting”.

You can specify the current folder upon startup as well as other options—for
more information, see “Startup Folder for the MATLAB Program” on page 1-8
and “Startup Options” on page 1-14.

Limitation
On Macintosh® platforms, if you run MATLAB remotely, for example using
rlogin, you must run with nodisplay, noawt, and nojvm startup options—for
more information, see “Startup Options” on page 1-14.

1-6



Startup Error Log Reporter

Startup Error Log Reporter
Upon startup, if the MATLAB program detects an error log generated by
a serious problem encountered during the previous session, an Error Log
Reporter prompts you to e-mail the log to MathWorks for analysis. Click
Send Report to e-mail the log, or click Help for more information. After
sending the log, a confirmation message appears in the Command Window.
For more information, see “Abnormal Termination” on page 1-24.

1-7



1 Startup and Shutdown

Startup Folder for the MATLAB Program

In this section...

“What Is the Startup Folder?” on page 1-8

“Startup Folder on Windows Platforms” on page 1-9

“Startup Folder on Linux Platforms” on page 1-10

“Startup Folder on Macintosh Platforms” on page 1-10

“Changing the Startup Folder” on page 1-10

What Is the Startup Folder?
The startup folder is the current folder in the MATLAB application when it
starts. It is convenient if you make the current folder upon startup be a folder
that you frequently use. On Windows and Apple Macintosh platforms, a folder
called userpath is added automatically to the search path upon startup, and
is the default startup folder. On Linux platforms, you can set the userpath
as the startup folder. The default value for userpath is, for example,
Documents/MATLAB on Microsoft Windows Vista™ platforms. You can specify
a different default value for userpath, or specify a different startup folder.

Accepting the default value for userpath and using it as the startup folder
offers these benefits:

• You can store the MATLAB files you work with in one, appropriately-named
location, such as Documents/MATLAB.

• Your MATLAB files are readily available upon startup, because the current
folder is always the same, for example, Documents/MATLAB.

• You can always run your files because MATLAB automatically adds the
userpath folder to the top of the search path upon startup.

• The first time you run a new version of MATLAB, MATLAB automatically
creates the userpath folder if it does not exist.

• When you upgrade to a newer version of MATLAB, MATLAB automatically
continues to use the same MATLAB folder and your existing files, with all
of its other benefits.

1-8



Startup Folder for the MATLAB® Program

• The default userpath also utilizes the benefits provided by the standard
location in the Windows and Macintosh environments for storing personal
files. Files in the Documents/MATLAB folder (or My Documents/MATLAB
on Windows platforms other than Windows Vista) are available to
you when you use other machines. Because each user has their own
Documents/MATLAB folder, other users, even those using your machine,
cannot access files in your Documents/MATLAB folder.

To view the userpath value, run the userpath function. To specify a location
other than the default for userpath, or if you do not want to take advantage
of userpath, make changes with the userpath function.

There are other ways to change the startup folder as well as the folders on
your search path. For more information, see “Changing the Startup Folder” on
page 1-10 and “Viewing Files and Folders on the Search Path” on page 7-74.

Startup Folder on Windows Platforms
The startup folder on Windows platforms depends on any startup options you
specified and the way you started MATLAB:

How Started Startup Folder

Double-click the MATLAB
shortcut on yourWindows
desktop

The startup folder is set to the userpath value,
whose default value is My Documents\MATLAB,
or Documents\MATLAB on Windows Vista
platforms. The userpath folder is
automatically added to the search path. If
there is a value specified in the Start in
field of the Properties dialog box for the
MATLAB program, that value is the startup
folder, although the userpath is added to
the search path. If MATLAB does not find a
valid userpath value upon startup, and the
Start in field is empty, the startup folder is
the Windows desktop.

Double-click a file type
associated with MATLAB

The folder in which the file resides is the
startup folder. The userpath folder is
automatically added to the search path.

1-9



1 Startup and Shutdown

How Started Startup Folder

In a DOS window The folder in which you ran the matlab
command is the startup folder. The userpath
folder is automatically added to the search
path.

Startup Folder on Linux Platforms
On Linux platforms, the default startup folder is the folder from which you
started MATLAB.

You can specify that the userpath be the startup folder by setting the
value of the environment variable MATLAB_USE_USERPATH to 1 prior to
startup. By default, userpath is userhome/Documents/MATLAB, and MATLAB
automatically adds the userpath folder to the top of the search path upon
startup. To specify a different folder for userpath, and for other options,
use the MATLAB userpath function.

Startup Folder on Macintosh Platforms
When you start MATLAB on Apple Macintosh platforms by double-clicking
the MATLAB application, the startup folder is the value returned when you
enter userpath, which by default is userhome/Documents/MATLAB. MATLAB
automatically adds the userpath folder to the top of its search path upon
startup. To specify a different folder for userpath, and for other options,
use the userpath function.

When you start MATLAB in a shell, the default startup folder is the folder
from which you started MATLAB.

Changing the Startup Folder
You can start MATLAB in a folder other than the default in one of these ways:

• “Changing the Startup Folder Via the userpath Function” on page 1-11

• “Changing the Startup Folder Using the Shortcut — Windows Platforms
Only” on page 1-11

• “Changing the Startup Folder Using the startup.m File” on page 1-13

1-10



Startup Folder for the MATLAB® Program

Changing the Startup Folder Via the userpath Function
Use the userpath function to change the startup folder as well as to add the
startup folder to the search path upon startup. For more information, see the
userpath reference page and “Startup Folder for the MATLAB Program”
on page 1-8.

Changing the Startup Folder Using the Shortcut — Windows
Platforms Only
To change the startup folder on Windows platforms using the shortcut,

1 Right-click the shortcut icon for MATLAB and select Properties from
the context menu.

The Properties dialog box for MATLAB opens to the Shortcut pane.

2 The Target field contains the full path to start MATLAB.

By default, the startup folder is My Documents\MATLAB or
Documents\MATLAB on Windows Vista platforms; for more information, see
“Startup Folder on Windows Platforms” on page 1-9.

In the Start in field, specify the full path to the folder in which you want
MATLAB to start, and click OK.

1-11



1 Startup and Shutdown

�������	

��������������������	����
����

The next time you start MATLAB using that shortcut icon, the current folder
will be the one you specified in step 2.

1-12



Startup Folder for the MATLAB® Program

You can make multiple shortcuts to start MATLAB, each with its own startup
folder, and with each startup folder having different startup options.

Changing the Startup Folder Using the startup.m File
Use the startup.m file to specify the startup folder as well as other startup
options—for details, see “Specifying Startup Options in the MATLABStartup
File” on page 1-15.

1-13



1 Startup and Shutdown

Startup Options

In this section...

“Specifying MATLAB Startup Options” on page 1-14

“Commonly Used Startup Options” on page 1-16

“Passing Perl Variables on Startup” on page 1-17

“Startup and Calling Java Software from the MATLAB Program” on page
1-18

Specifying MATLAB Startup Options
You can specify startup options (also called command flags or command line
switches) that instruct the MATLAB program to perform certain operations
when you start it. On all platforms, you specify the options as arguments
to the matlab command when you start is at the operating system prompt.
For example, the following starts MATLAB and suppresses the display of
the splash screen.

matlab -nosplash

On Windows platforms, you can precede a startup option with either a hyphen
(-) or a slash (/). For example, -nosplash and /nosplash are equivalent.

On all platforms, you can also specify startup options using a MATLAB
startup file—see “Specifying Startup Options in the MATLABStartup File”
on page 1-15

On Windows platforms, you can specify startup options in the MATLAB
shortcut—see “Including Startup Options in a Shortcut on Windows Systems”
on page 1-14.

Including Startup Options in a Shortcut on Windows Systems
You can add selected startup options (also called command flags or switches
for the command line) to the target path for your shortcut in the Windows
environment for MATLAB. For more information about the options, see
“Commonly Used Startup Options” on page 1-16.

1-14



Startup Options

To use startup options for the MATLAB shortcut icon in a Windows
environment, follow these steps:

1 Right-click the shortcut icon for MATLAB and select Properties from
the context menu. The Properties dialog box for MATLAB opens to the
Shortcut pane.

2 In the Target field, after the target path for matlab.exe, add the startup
option, and click OK. For example, adding -r "filename" runs the
MATLAB code file filename after startup.

This example instructs MATLAB to automatically run the file results after
startup, where results.m is in the startup folder or on the search path for
MATLAB. The statement in the Target field might appear as

C:\Program Files\MATLAB\R2010b\bin\matlab.exe -r "results"

Include the statement in double quotation marks ("statement"). Use only
the filename, not the file extension or pathname. For example, MATLAB
produces an error when you run

... matlab.exe -r "D:\results.m"

Use semicolons or commas to separate multiple statements. This example
changes the format to short, and then runs the MATLAB code file results:

... matlab.exe -r "format('short');results"

Separate multiple options with spaces. This example starts MATLAB without
displaying the splash screen, and then runs the MATLAB code file results:

... matlab.exe -nosplash -r "results"

Specifying Startup Options in the MATLABStartup File
At startup, MATLAB automatically executes the file matlabrc.m
and, if it exists, startup.m. The file matlabrc.m, which is in the
matlabroot/toolbox/local folder, is reserved for use by MathWorks and by
the system manager on multiuser systems.

1-15



1 Startup and Shutdown

The file startup.m is for you to specify startup options. For example, you can
modify the default search path, predefine variables in your workspace, or
define defaults for Handle Graphics® objects. Use the following statements in
a startup.m file to add the specified folder, /home/username/mytools, to the
search path, and to change the current folder to mytools upon startup.

addpath /home/username/mytools
cd /home/username/mytools

Place the startup.m file in the default or current startup folder, which is
where MATLAB first looks for it. For more information, see “Startup Folder
for the MATLAB Program” on page 1-8.

Commonly Used Startup Options
The following table provides a list of some commonly used startup options
for both Windows and UNIX® platforms. For more information, including a
complete list of startup options, see the matlab (Windows) reference page or
the matlab (UNIX) reference page.

Platform Option Description

All -c licensefile Set LM_LICENSE_FILE to licensefile. It can have the form
port@host.

All -h or -help Display startup options (without starting MATLAB).

All -logfile
"logfilename"

Automatically write output from MATLAB to the specified
log file.

Windows
platforms

-minimize Start MATLAB with the desktop minimized. Any desktop
tools or documents that were undocked when MATLAB was
last closed will not be minimized upon startup.

1-16



Startup Options

Platform Option Description

UNIX
platforms

-nojvm Start MATLAB without loading the Sun Microsystems JVM™
software. This minimizes memory usage and improves initial
startup speed, but restricts functionality. With nojvm, you
cannot use the desktop, figures, or any tools that require Java
software.

For example, you cannot set preferences if you start MATLAB
with the -nojvm option. However, you can start MATLAB
once without the -nojvm option, set the preference, and quit
MATLAB. MATLAB remembers that preference when you
start it again, even if you use the -nojvm option.

All -nosplash Start MATLAB without displaying its splash screen.

All -r "statement" Automatically run the specified statement immediately after
MATLAB starts. This is sometimes referred to as calling
MATLAB in batch mode. Files you run must be in the startup
folder for MATLAB or on the search path. Do not include
pathnames or file extensions. Enclose the statement in double
quotation marks ("statement"). Use semicolons or commas
to separate multiple statements

All -singleCompThread Limit MATLAB to a single computational thread. By default,
Windows makes use of the multithreading capabilities of the
computer on which it is running.

Passing Perl Variables on Startup
You can pass Perl variables to MATLAB on startup by using the -r option
of the matlab function. For example, assume a MATLAB function test that
takes one input variable:

function test(x)

To start MATLAB with the function test, use the command

matlab -r "test(10)"

On some platforms, you might need to use double quotation marks:

matlab -r "test(10)"

1-17



1 Startup and Shutdown

This command starts MATLAB and runs test with the input argument 10.

To pass a Perl variable instead of a constant as the input parameter, follow
these steps.

1 Create a Perl script such as

#!/usr/local/bin/perl
$val = 10;
system('matlab -r "test(' . ${val} . ')"');

2 Invoke the Perl script at the prompt using a Perl interpreter.

For more information, see the matlab (Windows) or matlab (UNIX) reference
page.

Startup and Calling Java Software from the MATLAB
Program
When the MATLAB program starts, it constructs the class path for
Sun Microsystems Java software using librarypath.txt as well as
classpath.txt. If you call Java software from MATLAB, see more about
this in “The Java Class Path” and “Locating Native Method Libraries” in the
MATLAB External Interfaces documentation.

1-18



Toolbox Path Caching in the MATLAB® Program

Toolbox Path Caching in the MATLAB Program

In this section...

“About Toolbox Path Caching in the MATLAB Program” on page 1-19

“Using the Cache File Upon Startup” on page 1-19

“Updating the Cache and Cache File” on page 1-19

“Additional Diagnostics with Toolbox Path Caching” on page 1-22

About Toolbox Path Caching in the MATLAB Program
For performance reasons, the MATLAB program caches toolbox folder
information across sessions. The caching features are mostly transparent to
you. However, if MATLAB does not see the latest versions of your MATLAB
code files or if you receive warnings about the toolbox path cache, you might
need to update the cache.

Using the Cache File Upon Startup
Upon startup, MATLAB gets information from a cache file to build the toolbox
folder cache. Because of the cache file, startup is faster, especially if you run
MATLAB from a network server or if you have many toolbox folders. When
you end a session, MATLAB updates the cache file.

MATLAB does not use the cache file at startup if you clear the Enable
toolbox path cache check box in File > Preferences > General. Instead,
it creates the cache by reading from the operating system folders, which is
slower than using the cache file.

Updating the Cache and Cache File

How the Toolbox Path Cache Works
MATLAB caches (essentially, stores in a known files list) the names and
locations of files in matlabroot/toolbox folders. These folders are for files
provided with MathWorks® products that should not change except for product
installations and updates. Caching those folders provides better performance
during a session because MATLAB does not actively monitor those folders.

1-19



1 Startup and Shutdown

We strongly recommend that you save any MATLAB code files you create
and any files provided by MathWorks that you edit in a folder that is
not in the matlabroot/toolbox folder tree. If you keep your files in
matlabroot/toolbox folders, they may be overwritten when you install
a new version of MATLAB.

When to Update the Cache
When you add files to matlabroot/toolbox folders, the cache and the
cache file need to be updated. MATLAB updates the cache and cache file
automatically when you install toolboxes or toolbox updates using the installer
for MATLAB. MATLAB also updates the cache and cache file automatically
when you use MATLAB tools, such as when you save files from the MATLAB
Editor to matlabroot/toolbox folders.

When you add or remove files in matlabroot/toolbox folders by some other
means, MATLAB might not recognize those changes. For example, when you

• Save new files in matlabroot/toolbox folders using an external editor

• Use operating system features and commands to add or remove files in
matlabroot/toolbox folders

MATLAB displays this message:

Undefined function or variable

You need to update the cache so MATLAB will recognize the changes you
made in matlabroot/toolbox folders.

Steps to Update the Cache
To update the cache and the cache file,

1 Select File > Preferences > General.

The General Preferences pane is displayed.

2 Click Update Toolbox Path Cache and click OK.

1-20



Toolbox Path Caching in the MATLAB® Program

Function Alternative
To update the cache, use rehash toolbox. To also update the cache file, use
rehash toolboxcache. For more information, see rehash.

1-21



1 Startup and Shutdown

Additional Diagnostics with Toolbox Path Caching
To display information about startup time when you start MATLAB, select
the Enable toolbox path cache diagnostics check box in General
Preferences.

1-22



Quitting the MATLAB® Program

Quitting the MATLAB Program

In this section...

“Ways to Quit the MATLAB Program” on page 1-23

“Confirm Quitting the MATLAB Program” on page 1-23

“Running a Script When Quitting the MATLAB Program” on page 1-24

“Abnormal Termination” on page 1-24

Ways to Quit the MATLAB Program
To quit the MATLAB program at any time, do one of the following:

• Click the Close box in the MATLAB desktop.

• Select Exit MATLAB from the desktop File menu.

• Type quit at the Command Window prompt.

MATLAB closes after

• Prompting you to confirm quitting, if that preference is specified (see
“Confirm Quitting the MATLAB Program” on page 1-23)

• Prompting you to save any unsaved files

• Running the finish.m script, if it exists in the current folder or on the
search path (see “Running a Script When Quitting the MATLAB Program”
on page 1-24)

Confirm Quitting the MATLAB Program
To set a preference that displays a confirmation dialog box when you quit
MATLAB, select File > Preferences > General > Confirmation Dialogs,
select the Confirm before quitting check box, and click OK. MATLAB then
displays the following dialog box when you quit.

1-23



1 Startup and Shutdown

For more information, see “Confirmation Dialogs Preferences” on page 2-132.

You can also display your own quitting confirmation dialog box using a
finish.m script, as described in the following section.

Running a Script When Quitting the MATLAB Program
When MATLAB quits, it runs the script finish.m, if finish.m exists in the
current folder or anywhere on the search path. You create the file finish.m.
It contains statements to run when MATLAB terminates, such as saving the
workspace or displaying a confirmation dialog box. There are two sample
files in matlabroot/toolbox/local that you can use as the basis for your
own finish.m file:

• finishsav.m — Includes a save function so the workspace is saved to
a MAT-file when MATLAB quits.

• finishdlg.m — Displays a confirmation dialog box that allows you to
cancel quitting.

For more information, see the finish reference page.

Abnormal Termination

• “When the MATLAB Program Terminates Unexpectedly” on page 1-25

• “Error Log Reporting” on page 1-26

• “Recovering Data After an Abnormal Termination” on page 1-26

1-24



Quitting the MATLAB® Program

When the MATLAB Program Terminates Unexpectedly
In the event MATLAB experiences a segmentation violation (segv) or other
serious problem, the MATLAB System Error dialog box opens to notify
you about the problem. When this occurs, the internal state of MATLAB
is unreliable and not suitable for further use. You should exit as soon as
possible and then restart. However, you might want to first try to save your
work in progress.

To exit and restart without trying to save your work, follow these steps:

1 If you want to view the stack trace for the problem, click Details.

2 Click Close to terminate MATLAB.

3 Restart MATLAB. If the Error Log Reporter dialog box opens, select the
option to send a report to MathWorks.

To try to save your work in progress before exiting and restarting MATLAB,
follow these steps:

1 If you want to view the stack trace for the problem, click Details.

2 Click Attempt to Continue. MATLAB tries to return to the Command
Window or tool you were using.

The Command Window displays the message Please exit and restart
MATLAB to the left of the prompt, which reminds you to discontinue use.

3 From the Command Window or tool, try to save the workspace and unsaved
files.

Caution Because the internal state of MATLAB might be corrupted,
do not save existing files to the same filename. Instead, specify a new
filename. The information in the new file might be corrupted or incomplete.

4 Exit MATLAB immediately after saving because any further usage would
be unreliable.

1-25



1 Startup and Shutdown

5 Restart MATLAB. If the Error Log Reporter dialog box opens, select the
option to send a report to MathWorks.

Error Log Reporting
Upon startup, if MATLAB detects an error log generated by a serious
problem during the previous session, an Error Log Reporter prompts you
to e-mail the log to MathWorks for analysis. The error log contains the
stack trace and information about the MATLAB software configuration.
If the problem occurs repeatedly, make note of what seems to cause
it, look for information about it in MathWorks Bug Reports database,
and if the problem is reproducible, please submit a Service Request via
http://www.mathworks.com/support/contact_us/ts/help_request_1.html.

E-Mailing Error Log Reports. There are some situations where the Error
Log Reporter will not open, for example, when you start MATLAB with a -r
option or run in deployed mode. It also will not open if you selected the option
to never send error reports the last time the Error Log Reporter opened. If
you experience abnormal termination but do not see the Error Log Reporter
on subsequent startups, you can instead e-mail the reports.

Send e-mail to segv@mathworks.com with this file attached:
C:\Temp\matlab_crash_dump.####. After you send the log file, delete it or
move it to another location. If you do not delete the log file, the Error Log
Reporter can detect it on the next startup and prompt you to send it, even
though you already e-mailed it.

Recovering Data After an Abnormal Termination
If MATLAB terminates unexpectedly, you might lose information. After you
start MATLAB again, you can try these suggestions to recover some of the
information.

• Use the Command History or the file on which it is based, history.m,
to run statements from the previous session. You might be able to
approximately recreate data as it was prior to the termination. For more
information, see “Overview of the Command History Window” on page 3-66.

• If you used the diary function or -logfile startup option for the session
in which MATLAB terminated unexpectedly, you might be able to recover
output.

1-26

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/contact_us/ts/help_request_1.html
mailto:segv@mathworks.com


Quitting the MATLAB® Program

• If you saved the workspace to a MAT-file during the session, you can
recover it by loading the MAT-file. For more information, see “Viewing and
Loading a Saved Workspace and Importing Data” on page 6-7, and “Saving
the Current Workspace” on page 6-5.

• If you were editing a file in the Editor when MATLAB terminated
unexpectedly, and you had the autosave preference enabled, you should be
able to recover changes you made to files you had not saved.

• If you were in a Simulink session when a segmentation violation occurred,
and you have the Simulink Autosave Options preference selected, note
that the last autosave file for the model reflects the state of the autosave
data prior to the segmentation violation. Because Simulink models might
be corrupted by a segmentation violation, a model is not autosaved after a
segmentation violation occurs.

Some of the above suggestions refer to actions you might have needed to
take during the session when MATLAB terminated. If you did not take those
actions, consider regularly performing them to help you recover from any
future abnormal terminations you might experience.

1-27



1 Startup and Shutdown

1-28



2

Desktop

• “Desktop Overview” on page 2-2

• “Opening and Arranging Desktop Tools” on page 2-5

• “Opening and Arranging Desktop Documents” on page 2-20

• “Managing Desktop Layouts” on page 2-37

• “Examples of Desktop Arrangements” on page 2-40

• “Running Frequently Used Statement Groups with MATLAB Shortcuts”
on page 2-57

• “Performing Desktop Actions Using the Keyboard” on page 2-66

• “Performing Desktop Actions Using Keyboard Shortcuts” on page 2-69

• “Accessing Tools with the Start Button” on page 2-94

• “Using Web Browsers in MATLAB” on page 2-101

• “Other Features for Managing the Desktop” on page 2-108

• “Managing Your Licenses” on page 2-121

• “Check for Updates” on page 2-123

• “Specifying Options for MATLAB Using Preferences” on page 2-124

• “Setting General Preferences for the MATLAB Application” on page 2-129

• “Customizing the Desktop Using Preferences” on page 2-138

• “Accessibility” on page 2-159

• “Macintosh Platform — Differences” on page 2-172



2 Desktop

Desktop Overview

In this section...

“About the Desktop” on page 2-2

“Summary of Desktop Tools” on page 2-4

About the Desktop
In general, when you start the MATLAB program, it displays the MATLAB
desktop. The desktop is a set of tools (graphical user interfaces or GUIs) for
managing files, variables, and applications associated with MATLAB.

The first time you start MATLAB, the desktop appears with the default
layout, as shown in the following illustration.

2-2



Desktop Overview

Access
tools and more.

Drag to
resize windows.

Type MATLAB
statements.

View or execute
previously run
statements.

Menus change
depending on the
tool you are using.

Select a tool’s
title bar to use 
that tool.

Get
help.

View or change
the current folder.

Move, minimize, 
maximize, or 
close a window.

You can change the desktop arrangement to meet your needs, including
resizing, moving, and closing tools. The desktop manages tools differently
from documents. The Command History and Editor are examples of tools.
A file in the Editor and a variable in the Variable Editor are examples of
documents. For details, see “Opening and Arranging Desktop Tools” on page
2-5 and “Opening and Arranging Desktop Documents” on page 2-20.

2-3



2 Desktop

Summary of Desktop Tools
The MATLAB desktop manages the tools listed in the table that follows.
Not all of the tools appear by default when you first start MATLAB. If you
prefer a command-line interface, you can often use functions to accomplish
the same results. The documentation for each tool provides instructions for
using functions to perform the task. These instructions are typically labeled
as Function Alternatives.

Desktop Tool Description

Command History View a log of or search for the statements you entered in the Command
Window, copy them, execute them, and more.

Command Window Run MATLAB language statements.

Current Folder
Browser

View files, perform file operations such as open, find files and file content,
and manage and tune your files.

Editor Create, edit, debug, and analyze files containing MATLAB language
statements.

File Exchange Access a repository of files, created by users for sharing with other users,
at the MathWorks Web site.

Figures Create, modify, view, and print figures generated with MATLAB.

Comparison Tool View line-by-line differences between two files.

Help Browser View and search the documentation and demos for all your MathWorks
products.

Profiler Improve the performance of your MATLAB code.

Start Button Run tools and access documentation for all your MathWorks products,
and create and use toolbar shortcuts for MATLAB.

Variable Editor View array contents in a table format and edit the values.

Web Browser View HTML and related files produced by MATLAB.

Workspace Browser View and change the contents of the workspace.

2-4



Opening and Arranging Desktop Tools

Opening and Arranging Desktop Tools

In this section...

“Opening Desktop Tools” on page 2-5

“Navigating Among Desktop Tools and Documents” on page 2-7

“Closing Desktop Tools” on page 2-8

“Resizing Desktop Tools” on page 2-9

“Moving Tools Within the Desktop” on page 2-10

“Undocking Tools to Move Them Outside the Desktop” on page 2-13

“Moving Undocked Tools Back onto the Desktop” on page 2-14

“Grouping Desktop Tools Together” on page 2-14

“Maximizing Available Space on the Desktop” on page 2-16

“Maximizing Tools Within the Desktop” on page 2-17

“Minimizing Tools Within the Desktop” on page 2-17

See also “Examples of Desktop Arrangements” on page 2-40.

Opening Desktop Tools
To open a tool, select it from the Desktop menu. A check mark in front of the
tool name on the menu indicates that the tool is open. The tool opens in the
location it occupied the last time you used it. The dimensions of other open
tools adjust to accommodate the newly opened tool.

Tools and the documents associated with them can be part of the desktop. You
can open a document and its associated tool at the same time, as follows:

• Variable Editor — Open it by double-clicking a variable in the Workspace
browser.

• Editor — Open it by creating or opening an existing text file. For
instructions, see “Starting, Creating Files, and Closing the Editor” on page
9-6.

• Figures — Create figures using plot and other graphics functions.

2-5



2 Desktop

You also can open most desktop tools by:

• Clicking the desktop Start button, selecting Desktop Tools, and then
clicking the tool you want to open.

• Using a function. For example, type helpbrowser to open the Help
browser. For information on how to open a given tool using a function,
see the documentation for that tool.

The following example shows how the MATLAB desktop can look when the
following are open:

• Command Window

• Command History window

• Help browser

• The Editor with two open files, collatz.m and lengthofline.m

Because the Command Window is the active window, its title bar is dark blue.

2-6



Opening and Arranging Desktop Tools

Navigating Among Desktop Tools and Documents

• “Navigating Among Desktop Tools and Documents” on page 2-8

2-7



2 Desktop

• “Making a Tool or Document the Active Window” on page 2-8

Navigating Among Desktop Tools and Documents
You can navigate among desktop tools and documents by:

• Choosing an entry in the Window menu

• Using a function that opens the tool or document

• Clicking the entry for an undocked tool or document on the Microsoft
Windows task bar (or the equivalent for your platform)

Making a Tool or Document the Active Window
To make a tool or document the active window, do one of the following:

• Select the tool from the Window menu.

TheWindow menu displays all open desktop tools and documents, as well
as opened tools for other MathWorks products.

• Use the shortcut or mnemonic indicated on the Window menu for that
tool or document.

See “Keyboard Key Combinations” on page 2-66

• Run the function that opens the tool.

- If the tool is already open, the command selects the tool.

- If the tool is not already open, the command opens and selects the tool.
For example, type helpbrowser to open or select the Help browser. The
documentation for each tool includes information on the function for
opening and selecting that tool.

Closing Desktop Tools
To close a desktop tool, do one of the following:

• Select the item on the Desktop menu.

The check mark preceding the tool name on the menu clears and the tool
closes.

• Click the Close box on the title bar for the tool.

2-8



Opening and Arranging Desktop Tools

• Select File > Close Toolname.

• Right-click the Microsoft Windows task bar entry for an undocked tool
and select Close.

When you close a tool, other tools in the desktop adjust their sizes accordingly.

For tools that contain documents, all documents in that tool close, as well.
For the Editor, a dialog box appears asking you to save any documents that
have unsaved changes. If you do not want to see that dialog box or save any
unsaved changes, hold the Ctrl key and click the Close box.

Resizing Desktop Tools
To resize tools on the MATLAB desktop, you can use the mouse or the
keyboard, as described in the following sections:

• “Resizing Desktop Tools Using the Mouse” on page 2-9

• “Resizing Desktop Tools Using the Keyboard” on page 2-10

Resizing Desktop Tools Using the Mouse
To expand or reduce the size of adjacent tool windows, use the pointer to drag
the bar that appears between them. This bar is the separator bar. When you
move the pointer onto the separator bar, the pointer assumes a different
shape, as follows:

• On Windows platforms, when the pointer is between two tools or
documents, it is a double-headed arrow .

• On UNIX platforms, when the pointer is between two tools or documents, it
is an arrow with a bar.

• When the pointer is between three or four documents, it is a four-headed
arrow .

2-9



2 Desktop

�����������������������������������
����������������

Resizing Desktop Tools Using the Keyboard
You can use menu item mnemonics to resize desktop tools using the keyboard.

For example, suppose the Command Window is open on the desktop along
with other tools. To make the Command Window the active tool:

1 Click in the Command Window.

2 Press Alt+D, Z. This action is the mnemonic equivalent of selecting
Desktop > Resize Command Window.

The pointer shape becomes an arrow.

3 Use the keyboard arrow keys to change the size of the Command Window.

4 Press Enter to accept the new size, or press Esc to return the Command
Window to its original size.

Moving Tools Within the Desktop
To move the location of tools on the MATLAB desktop, use the mouse or the
keyboard, as described in the following sections:

• “Moving Tools Using the Mouse” on page 2-11

• “Moving Tools Using the Keyboard” on page 2-13

2-10



Opening and Arranging Desktop Tools

Moving Tools Using the Mouse
To move a tool to another location on the MATLAB desktop using the mouse,
follow these steps:

1 Drag the title bar of the tool to where you want the tool to be.

As you drag the tool, an outline of it appears. The status bar indicates
where the tool moves if you release the mouse. For instance, it can display:

• Release the mouse to dock the Editor on the top.

• Release the mouse to tab-dock the Current Folder.

• Release the mouse to leave the Editor in the current location.

2 When the outlined position is where you want the tool to be, release the
mouse button.

The tool stays at the new location.

The following illustration shows how it looks as you drag the Command
History tool above the Command Window. When you begin dragging the
Command History tool, the outline appears around the tool. When you drag
it across the boundary separating the two tools, the outline indicates the
top-bottom arrangement. If you release the mouse button, you change the
arrangement from side-by-side to top-bottom.

2-11



2 Desktop

������������������� �����!
"����"#�������������
������

$�������	�
������������������ �����!�"����"
��������"����!�	�"������#���
����������	���

�������	����������
�!�������	%���������	���������������
�

Other tools on the desktop automatically resize to accommodate the new
configuration. The following example shows how the desktop looks after you
move the Command History tool above the Command Window.

2-12



Opening and Arranging Desktop Tools

Moving Tools Using the Keyboard
To move desktop tools using the keyboard, follow the menu item mnemonics.
For example, suppose the Command Window and other tools are currently
open on the desktop. To move the Command Window to a new location, follow
these steps:

1 Make the Command Window the active tool by pressing Ctrl+0.

2 Press Alt+D, V, which is the mnemonic equivalent for selecting
Desktop > Move Command Window.

The pointer shape becomes an arrow.

3 Use the arrow keys to move the outline of the Command Window to a new
location.

4 Press Enter to keep the tool at the new location, or press Esc to return
the Command Window to its original position.

Undocking Tools to Move Them Outside the Desktop
You can move a tool outside the MATLAB desktop (called undocking) to
make it larger or easier to use. For example, when referring to the online
documentation, you can move the Help browser off the desktop and enlarge it.

To move a tool outside the desktop:

1 Select the tool to make it active.

2 Perform one of the following:

• Click the Undock button on the title bar of the tool you want to move
outside the desktop.

• Select Undock for that tool from the Desktop menu; the tool must
be the currently active one.

• Drag the title bar of the tool outside the desktop. As you drag, an outline
of the tool appears. Release the mouse.

The tool displays outside the MATLAB desktop and an entry for it appears in
the Windows task bar or the equivalent for your platform. Tools within the
desktop resize accordingly.

2-13



2 Desktop

Moving Undocked Tools Back onto the Desktop
To move a tool that is outside the MATLAB desktop back onto the desktop, do
one of the following:

• Click the Dock button on the menu bar for that tool.

• Select Dock from the Desktop menu for that tool.

The tool moves onto the desktop and other tools within the desktop
automatically resize to accommodate the new tool.

Grouping Desktop Tools Together
You can group tools so that they occupy the same location on the MATLAB
desktop. Basically, you are stacking one tool on top of another. Then, you can
access the individual tools using the tool name on the title bar:

To group tools:

1 Drag the title bar of one tool on the desktop on top of another tool on the
desktop.

An outline of the tool you are dragging overlies the target tool.

2-14



Opening and Arranging Desktop Tools

&	�
������������������ �����!�"����"������������������������������������$����"
������	���������
���������

2 Release the mouse.

Both tools occupy the same space. Labeled tabs appear at the top of that
space.

2-15



2 Desktop

To view a grouped tool, click the title bar for the tool. The selected tool moves
to the foreground and becomes the currently active window.

When you click the Close box for a tool grouped with other tools, that tool
closes. You cannot close all the grouped tools at once. Instead, close each
tool individually.

Right-click the title bar for a tool and use the context menu to close, undock,
maximize, or minimize the tool.

Maximizing Available Space on the Desktop
To hide the title bars for desktop tools so they use less space, select
Desktop > Titles. This action clears the check mark next to the Titles menu
item. Identify a desktop tool with a hidden title by hovering over the area
where the title bar used to be. A tooltip displays the name of the tool.

2-16



Opening and Arranging Desktop Tools

Maximizing Tools Within the Desktop
MATLAB software provides multiple ways to maximize tools on the desktop.
It also has multiple ways of restoring the desktop to the layout in place before
you resized it. For example:

• To resize the active tool so it occupies the entire MATLAB desktop do one
of the following:

- Double-click the title bar in that tool.

- Select Desktop > Maximize Toolname.

- Click the Maximize button on the tool title bar.

• To return to the layout as it appeared before you maximized it, do one
of the following:

- Double-click the maximized title bar for that tool.

- Select Desktop > Restore Toolname.

- Click the Restore button on the title bar in that tool.

Minimizing Tools Within the Desktop
You can minimize any tool on the desktop, which creates a button representing
the tool along an edge of the desktop. For example, suppose you minimize the
Command Window. The desktop looks like the following image, although
the layout of the desktop and the location of the button can be different for
your desktop.

2-17



2 Desktop

Command
Window
button

MATLAB software provides multiple ways to minimize tools in the desktop,
restore the previous desktop layout, and manipulate the location of the tool
button. For example:

• To minimize a tool, do one of the following:

- Select Desktop > Minimize Toolname.

- Use the Minimize button on the title bar for the tool.

The button for the tool appears along the edge indicated by the minimize
arrow in the Desktop menu item or by the arrow on the button.

2-18



Opening and Arranging Desktop Tools

• To view or use a minimized tool, hover over or click the button for the tool.
This action temporarily opens the tool on the desktop. When you finish
using the tool, click the Minimize button or another tool. The tool appears
again as a button along the edge of the desktop.

• To return the tool to the position it occupied before you minimized it, do
one of the following:

- Double-click the button for the tool.

- Right-click the button for the tool, and then selectRestore > Toolname.

- Hover over or click the button for the tool, and then click the Restore
button on the title bar of the tool.

• To move the button for the tool, drag it to a different edge.

If you drag the button to a nonedge location on the desktop or outside of the
desktop, it moves the tool and opens it.

2-19



2 Desktop

Opening and Arranging Desktop Documents

In this section...

“Opening Documents” on page 2-20

“Navigating Among Open Documents Using the Document Bar” on page
2-22

“Adjusting the Document Bar” on page 2-23

“Positioning Documents” on page 2-24

“Moving and Resizing Documents” on page 2-34

“Closing Documents” on page 2-34

“Moving Documents Outside of the Desktop (Undocking)” on page 2-35

“Docking Documents and Tools” on page 2-36

“Grouping Documents in a Tool Outside the Desktop” on page 2-36

Opening Documents
Use the document bar to go to a document that is open, but not in view.
The names of all open documents appear on the document bar. Click the
document name to open the document. If the document bar is not open, select
Desktop > Document Bar > Bar Position and select the position for it,
for example, Right. For more information, see “Navigating Among Open
Documents Using the Document Bar” on page 2-22.

Entries for undocked documents appear on the Windows task bar, or the
equivalent for your platform. Click the task bar entry for a document to make
that document active.

When you open MATLAB documents, they open in the associated tool and
appear in the position they occupied when last used. Figures open undocked,
regardless of the last position occupied. If the tool is not already open, it
opens when you open the document.

How you open a document depends on the document type, as described in the
following table.

2-20



Opening and Arranging Desktop Documents

Document Type and
Tool

How to Open
Document

Where Document
Appears by Default

Other Techniques to
Open Document

Text file in the Editor Click the Open file
button on the
desktop toolbar and
select the file.

In the last location
of the Editor. The
default location for the
Editor is outside the
desktop.

“Opening Existing
Files Using the Editor”
on page 9-9

Variable in the
Variable Editor

Double-click a
variable in the
Workspace browser.

In the last location of
the Variable Editor.
The default location of
the Variable Editor is
docked on the desktop.

“Opening the Variable
Editor” on page 6-24

HTML or similar page
in the Web browser

Double-click the file
name in the Current
Folder browser.

In the last location of
the Web browser,
replacing the
existing Web browser
document.

“Using Web Browsers
in MATLAB” on page
2-101

Figure Use the plot function. In a figure window,
outside the desktop.

Any other function
or tool that creates a
figure window.

Example of Working with Documents on the Desktop
Some common actions for working with documents on the desktop are:

• Select a document from the document bar, making it the active open
document.

• Use theWindowmenu or equivalent toolbar buttons to position documents.

• Use buttons in the titlebar for a tool. The following image shows the Editor
titlebar, for example.

2-21



2 Desktop

To Accomplish
This:

Do This Using the Titlebar for a Tool:

Minimize the tool Click .

Maximize the tool Click .

Undock the tool
from the desktop

Click .

Close the tool,
including all
documents in the
tool

Click .

• Use buttons in a toolbar for a tool to arrange documents within a tool. The
following image shows the Editor toolbar.

To Accomplish This: Do This Using the Editor
Toolbar:

Arrange documents in the Editor
Use , as described in
“Positioning Documents” on page
2-24.

Undock a document Click .

Close and save the document
currently displaying

Click .

Close and not save the document
currently displaying

Click Ctrl + .

See also “Examples of Desktop Arrangements” on page 2-40.

Navigating Among Open Documents Using the
Document Bar
When you have more than one document open in a tool, each document
appears either maximized (the default), tiled, or floating (cascading). Tiled

2-22



Opening and Arranging Desktop Documents

and floating arrangements make multiple documents visible simultaneously.
The document bar shows the names for all open documents docked together
in a tool.

Making a Document Active
To make a document that is open and in view active, click it.

To make an open document that is not in view active, do one of the following:

• Select the document from the document bar.

If all the document names do not fit on the document bar, use the More
Documents button on the document bar. This button enables you to see
the names of additional open documents. Hover over the arrow to scroll
automatically through all the names, or click the arrow to move quickly
through the names.

• From the Window menu, select the document name.

• From theWindow menu, select Next Tab to make the next document on
the document bar active (relative to the currently active document).

• From the Window menu, select Previous Tab to make the previous
document on the document bar active (relative to the currently active
document).

See also “Performing Desktop Actions Using the Keyboard” on page 2-66.

Adjusting the Document Bar
You can show, hide, move, alphabetize, and adjust the size of the tabs on the
document bar as described in the following table.

To Accomplish This: Do This:

Show the document bar. Select Desktop > Document Bar > Bar Position, and
then select a location, for example, Right.

Hide the document bar. Select Document Bar > Bar Position > Hide from the
Window menu or the document bar context menu.

2-23



2 Desktop

To Accomplish This: Do This:

Move the document bar. Do one of the following:

• Drag it to another location.

• Select a new location from the Desktop > Document
Bar > Bar Position submenu.

Alphabetize the names of the
documents on the document bar.

Alphabetizing is useful if you have
many documents open at once.

Do one of the following:

• Right-click on the document bar and select
Alphabetize.

• Select Desktop > Document Bar > Alphabetize.

Reorder document names on the
document bar.

Do one of the following:

• Drag a document name to a different position on the
document bar.

• Select Move documentname On Bar and select a
direction. For example, select to Beginning from
either the Desktop > Document Bar menu or from
the document bar context menu.

Widen or narrow document names
on the document bar.

If document names are long, or if
you have many documents open,
the entire document name does not
display. Instead, you see the first
few characters followed by ellipsis
(...).

Do one of the following:

• When the document bar is on the top or bottom drag
the separator bar between two names on the bar. (Do
this, for example, to see an entire document name.)

• When the document bar is on the left or right, change
the width of the bar by dragging its left or right edge.

Positioning Documents
You can position open documents so that one document or multiple documents
are in view from within a tool. Select the arrangement from the Window
menu or use the Arrange Documents drop-down menu , as described in

2-24



Opening and Arranging Desktop Documents

the sections that follow. When you tile documents, they are all visible within
the tool, arranged in a grid pattern.

• “Viewing One Document (Default)” on page 2-25

• “Viewing All Open Documents, Layered on Top of One Another” on page
2-25

• “Viewing Documents, Side-By-Side” on page 2-26

• “Viewing Open Documents, One Above the Other” on page 2-26

• “Viewing Open Documents, Tiled Within the Tool” on page 2-26

• “Viewing a Subset of Open Documents, Tiled Within the Tool” on page 2-30

• “Replacing a Tiled Document with an Out-Of-View Document” on page 2-31

Viewing One Document (Default)
To have one document in view that occupies the entire tool (the default), do
one of the following:

• Select Window > Maximize.

• From the Arrange Documents drop-down menu, choose the Maximize
option .

The illustration in “Example of Working with Documents on the Desktop” on
page 2-21 shows this arrangement.

Viewing All Open Documents, Layered on Top of One Another
To use the Float or Cascade options to layer open documents one on top
of another, do one of the following:

• Select Window > Float.

• In the Arrange Documents drop-down menu, choose the Float option .

Optionally, selectWindow > Cascade to make the document arrangement
neater.

2-25



2 Desktop

Viewing Documents, Side-By-Side
To use the Tile option to view two documents side-by-side, use one of the
following methods:

• Select Window > Left/Right Tile.

• In the Arrange Documents drop-down menu, choose the Left/Right Tile
option .

See also “Displaying Two Parts of a File Simultaneously” on page 9-67 that
enables you to view two different parts of the same file simultaneously.

Viewing Open Documents, One Above the Other
You can use the Top/Bottom Tile option to view two documents stacked one
above the other by using one of the following methods:

• Select Window > Top/Bottom Tile.

• In the Arrange Documents drop-down menu, choose the Top/Bottom Tile
option .

See also “Displaying Two Parts of a File Simultaneously” on page 9-67 that
enables you to view two different parts of the same file simultaneously.

Viewing Open Documents, Tiled Within the Tool
To have all open documents in view, tiled within the tool, follow these steps:

1 Select the tiling option using one of these methods:

• Select Window > Tile.

On the Apple Macintosh platform, this option might be unavailable, so
use the drop-down menu instead.

• In the Arrange Documents drop-down menu, choose the Tile option .

A four-by-four grid displays.

2 Move the pointer across the grid to define the number and position of the
tiles, as shown in the following illustration.

2-26



Opening and Arranging Desktop Documents

You can select more or fewer tiles than there are open documents. In the
example, there are three open documents, but you must select four tiles to
make a square grid shape. The tiles that will contain documents appear
blue, whereas the tiles that will be empty appear gray.

This example shows how to select an arrangement so that all three documents
will be in view. The resulting arrangement has two documents above, one
below, and one empty tile.

2-27



2 Desktop

The following arrangement shows three documents tiled in the Editor. The
Editor is undocked from the desktop.

2-28



Opening and Arranging Desktop Documents

Closing an Empty Tile.

1 Move the pointer over the handle on the separator bar.

2 Click the Close box that appears where the handle previously appeared.

2-29



2 Desktop

Covering One Document with Another. Click the handle between two
open documents to move one on top of the other.

Viewing a Subset of Open Documents, Tiled Within the Tool
To view only a subset of all your open documents displayed in tile format,
follow these steps:

1 Select Window > Tile.

The Tile dialog box opens.

2 Indicate the documents you want to view and the grid pattern to use for
the arrangement of their display.

The following illustrations show how to specify the arrangement for
three variables in three rows in the Variable Editor, and the resulting
configuration.

2-30



Opening and Arranging Desktop Documents

Replacing a Tiled Document with an Out-Of-View Document
You can replace a currently tiled document with another that is on the
document bar, but not in currently in view. However, once you open a
document in a particular tile, that document always displays in the same tile
unless you drag the document to a new tile.

2-31



2 Desktop

For example, suppose you have three documents open in the Editor —
collatz.m, collatzplot.m, and collatzall.m. The first two documents are
in view, as shown in the following image.

Suppose you want to view collatzall.m in the top tile. Follow these steps:

1 If you did not already select it, click the title bar of the file in the top tile,
collatz.m.

2 On the document bar, click the name of the file you want to view
instead, collatzall.m. Assuming that you have not previously viewed
collatzall.m in the bottom tile, collatzall.m displays in the top tile.

2-32



Opening and Arranging Desktop Documents

However, if you previously viewed collatzall.m in the bottom tile,
collatzall.m displays in the bottom tile, regardless of which title bar
you click in step 1.

3 If collatzall.m displays in the bottom tile, drag its title bar to the top tile
to get the arrangement you want.

Now, collatzall.m displays in the top tile and collatzplot.m displays in
the bottom tile.

2-33



2 Desktop

Moving and Resizing Documents
You can move and resize documents to organize them as you want, as
described in the following table.

To Accomplish This: Do This:

Minimize all open documents in a
tool.

Make that tool active, and then select
Window > Minimize Toolname
Documents.

Float documents. Select Windows > Float.

Minimize (hide) a floating document. Click the minimize button on the
document title bar.

Access a minimized document. Select its name from the document
bar or the Window menu.

Move or resize a maximized
document.

Move or resize the tool that contains
it.

Make a document larger when it is
next to an empty tile.

Hover over the handle on the
separator bar, and then click the
Close box that appears.

Resize tiled documents. Drag the separator bar that is
between the documents.

Move tiled documents. Drag the title bar of the document to
another tile. If you drag it to a tile
that already contains a document,
the document you are dragging
covers up the other document.

Closing Documents
There are many ways to close a document. Use any of the following methods:

• Click the Close box on the title bar for the tool.

MATLAB closes all the documents open within the tool. Any undocked
documents remain open.

• Right-click the title bar for the document, and then select the Close option.

2-34



Opening and Arranging Desktop Documents

• Right-click the name of the document on the document bar, and then select
one of the Close options.

• Click the Close box next to the name of the document on the document
bar.

• To close a document or documents without saving changes, hold the Ctrl
key while clicking the Close box.

• Place the mouse pointer over the name of the document on the document
bar, and then click the middle mouse button. (Works on Microsoft Windows
and Linux only.)

• Select Window > Close Toolname Documents.

• Select File > Close Current_Document_Name.

• For an undocked document or tool, right-click the Windows task bar entry
(or equivalent for your platform) and select Close.

• When there are open documents, undocked from within their tools, close
all open documents and the tool by selecting Window > Close All
Documents from the desktop.

For example, in the undocked Editor, selectWindow > Close Documents to
close all documents in the Editor. The Editor remains open with no documents
in it, and any undocked Editor documents remain open.

Moving Documents Outside of the Desktop
(Undocking)
You can move a tool outside of the MATLAB desktop (called undocking) to
make it larger or easier to work with. For example, you can move the Help
browser outside of the desktop when referring to the online documentation.

To move a tool outside the desktop, do one of the following:

• Click the Undock arrow on the title bar of the tool you want to move
outside the desktop.

• Make the tool you want to move outside the desktop active. Then for that
tool, select Desktop > Undock.

2-35



2 Desktop

• Drag the title bar of the tool outside the desktop. As you drag the title bar,
an outline of the tool appears outside of the desktop. When the outline
appears where you want the tool to be, release the mouse.

The tool displays outside the MATLAB desktop and an entry for it appears
in the Windows task bar. Tools within the desktop automatically resize
accordingly.

Docking Documents and Tools
To dock documents and their associated tool, click the Dock button on the
menu bar for the tool.

If you dock a tool that includes documents, the tool and the documents within
the tool move onto the desktop. For example, when you dock the Editor and it
has open files, both the Editor and the documents move onto the desktop.

When you dock a document, it moves to the position in the tool that it occupied
before you undocked the document.

Grouping Documents in a Tool Outside the Desktop
To group all the documents for a tool outside of the desktop, undock the tool
from the desktop, not just the individual documents.

If you have already undocked all the documents and closed the empty tool
that had contained them, follow these steps:

1 Select Desktop > Dock All in Editor, for example.

This selection moves all the documents into the tool in the desktop.

2 Undock the tool.

2-36



Managing Desktop Layouts

Managing Desktop Layouts

In this section...

“Overview of Desktop Layouts” on page 2-37

“Saving a Desktop Layout” on page 2-37

“Reusing a Saved or Predefined Desktop Layout” on page 2-38

“Renaming a Saved Desktop Layout” on page 2-38

“Deleting a Saved Desktop Layout” on page 2-39

“Restoring the Default Desktop Layout” on page 2-39

Overview of Desktop Layouts
When you end a session, MATLAB saves the current desktop arrangement.
The next time you start MATLAB, the desktop appears like the way you left
it. However, tools such as the Help browser, Web browser, and Array Editor
do not reopen automatically, even if they were open when you ended the last
session. You can use startup options to specify tools that you want to open
on startup. For example, to have the Help browser open each time you start
MATLAB, add helpbrowser to a startup.m file. For more information, see
“Startup Options” on page 1-14.

You can also use predefined layouts, and you can save your own layouts for
later reuse.

Saving a Desktop Layout
To save your current desktop arrangement:

1 Select Desktop > Save > Layout.

2 Assign a name to the layout in the resulting dialog box, and then click OK.

MATLAB stores the arrangements you save as XML files in the preferences
folder for MATLAB. Type prefdir in the Command Window to display
the location of these XML files. The layout last used in a session is
MATLABDesktop.xml. The MATLABDesktop.xml file loads when you start
MATLAB and is overwritten when you close MATLAB.

2-37



2 Desktop

Reusing a Saved or Predefined Desktop Layout
Select Desktop > Desktop Layout, and then select the name of the layout
you want to use.

MATLAB includes the following predefined layouts:

• Default — Contains the Current Folder, Command Window, Workspace
Browser, and Command History windows.

• Command Window Only— Contains the Command Window only.

• History and Command Window — Contains the Command History
window and Command Window.

• All Tabbed— Contains all desktop tools, opened, maximized, and tabbed
together.

• All but Command Window Minimized — Contains all tools, opened
and minimized in the desktop, except for the Command Window and
sometimes the Editor. The Command Window and the Editor (if it contains
a document) remain maximized.

When you select a saved or predefined layout, document tools already open
in the desktop remain open.

Renaming a Saved Desktop Layout
Rename a desktop layout that you have previously created and saved as
follows:

1 Select Desktop > Organize Layouts.

2 In the resulting dialog box, select a layout, click the Rename button.

3 Type the new name over the existing name.

4 Click Close.

You can rename desktop layouts that you created only.

2-38



Managing Desktop Layouts

Deleting a Saved Desktop Layout
Delete a desktop layout that you have previously created and saved as follows:

1 Select Desktop > Organize Layouts.

2 In the resulting dialog box, select a layout, click the Delete button, and
then click Close.

You can delete desktop layouts that you created only.

Restoring the Default Desktop Layout
If you are dissatisfied with your current desktop arrangement, you can restore
it to the default arrangement as follows:

Select Desktop > Desktop Layout > Default

The default arrangement is that which appeared when you first installed
MATLAB.

2-39



2 Desktop

Examples of Desktop Arrangements

In this section...

“About These Examples” on page 2-41

“Tool Outside of Desktop and Other Tools Grouped Inside Desktop
Example” on page 2-41

“Maximized Tool in Desktop Example” on page 2-43

“Minimized Tools in Desktop Example” on page 2-44

“Tiled Documents in Desktop Example” on page 2-48

“No Empty Document Tiles Example” on page 2-49

“Maximized Documents Outside of the Desktop Example” on page 2-52

“Floating (Cascaded) Figures in Desktop Example” on page 2-53

“Undocked Tools and Documents Example” on page 2-55

2-40



Examples of Desktop Arrangements

About These Examples
Scan the illustrations in the following examples for a desktop arrangement
like what you want, and then follow the brief instructions to achieve the
arrangement. There are many different ways to accomplish the result;
these instructions present just one way. The instructions might not apply
exactly, depending on how your desktop looks before you start. For details,
see “Opening and Arranging Desktop Tools” on page 2-5 and “Opening and
Arranging Desktop Documents” on page 2-20.

Tool Outside of Desktop and Other Tools Grouped
Inside Desktop Example
This example shows two ways you can increase the size of a tool:

• Move a tool outside of the desktop to increase its size.

In the illustration that follows, the Help browser is outside of the desktop
and made larger. To move a tool outside of the desktop, click the Undock
button on the title bar of the tool when the tool is in the desktop.

• Group tools inside the desktop, and then access a particular tool by clicking
the name of that tool on the title bar.

In the illustration that follows, the Command Window, Command History,
Workspace browser, and Current Folder browser appear together as a
group. To achieve this arrangement, drag the title bar of one tool on top of
the title bar of the tool (or tools) with which you want to group it.

2-41



2 Desktop

 �
�����"����	���%����������������� '�	�������������
�����	������������

2-42



Examples of Desktop Arrangements

Maximized Tool in Desktop Example
This example shows a way to increase the size of a tool temporarily so that it
occupies the entire area of the desktop.

1 Click the Maximize button on the Command Window title bar.

2 Return the maximized Command Window to its previous size and position
in the desktop by clicking the Restore button on the Command Window
title bar.

2-43



2 Desktop

Minimized Tools in Desktop Example
Minimize a tool in the desktop to give the remaining desktop tools more space
in the desktop. Minimizing is available on Microsoft Windows and UNIX2

platforms. This image shows the button and associated tooltip for minimizing
the Command History window to the left edge of the desktop.

2. UNIX is a registered trademark of The Open Group in the United States and other
countries.

2-44



Examples of Desktop Arrangements

This image shows the Command History minimized. It appears as a button
along the left edge.

2-45



2 Desktop

To view or use a minimized tool temporarily, hover over or click the button
representing the minimized tool. MATLAB temporarily displays the tool.
This illustration shows the minimized Command History temporarily open,
as a result of hovering over the button.

2-46



Examples of Desktop Arrangements

When you select another tool, the tool on temporary display becomes
minimized again.

To return the Command History to the position and size it occupied in the
desktop before minimizing, do one of the following:

• Click the button representing the minimized tool, and then click the
Restore button .

• Right-click the button representing the minimized tool, and then choose
the Restore option.

2-47



2 Desktop

Tiled Documents in Desktop Example
When you open a document (for example, a text file), it also opens the tool (for
example, the Editor) if the tool is not already open. Subsequent documents
of the same type open in the tool and you can then arrange the documents
within the tool, as follows:

• Accept the default to have documents appear one on top of another, such
that the one on top hides the one or ones beneath it.

After changing the arrangement from the default, you can restore it by
selecting Window > Maximize (or the toolbar button).

• To arrange documents so that two documents display simultaneously,
side-by-side, selectWindow > Left/Right Tile (or the toolbar button).

When tools and documents are docked, you can save space by hiding toolbars
and document bars:

• To hide (or show) a toolbar, select Desktop > Toolbar name.

• To see or move the document bar, select Desktop > Document Bar > Bar
Position, and choose its location, for example, Top.

The following example shows two files, side-by-side in the Editor, and the
desktop shortcuts toolbar hidden.

2-48



Examples of Desktop Arrangements

No Empty Document Tiles Example
The following example illustrates many of the options described in this list for
creating and manipulating tiled documents.

• To see more than two documents at once:

1 Click the Arrange Document down arrow button and select the
4x4 grid pattern.

2 In the grid that appears, move the pointer to select the number of tiles
you want.

2-49



2 Desktop

If you choose more tiles than the number of currently open documents,
the extra tiles appear as empty grey tiles.

• To move a document to any empty tile, drag its title bar to the new location.

• To close an empty tile:

1 Position the pointer over the handle on the separator bar.

The handle becomes a Close box.

2 Click the Close box.

The empty tile closes, and the neighboring document expands.

2-50



Examples of Desktop Arrangements

• To hide one document behind another, click the Close box between two
tiles containing documents.

One document becomes hidden.

2-51



2 Desktop

Maximized Documents Outside of the Desktop
Example
This example illustrates a way to provide a large area for multiple documents,
in this case, files maximized in the undocked Editor. To:

• Group all documents in the Editor, select Desktop > Dock All in Editor
from any Editor document.

• Move all Editor documents outside of the desktop, select
Desktop > Undock Editor when the Editor is the active window.

• Make a document occupy the full area in the Editor, click the Maximize
button in the Editor toolbar, or select Window > Maximize.

• Display the cell toolbar, select Desktop > Cell Toolbar. This menu item
is available only when the current document has a .m file extension. The
cell toolbar displays below the Editor toolbar.

• Display the document bar on the left side of the Editor, select
Desktop > Bar Position > Document Bar > Left from the Editor.

The following image shows how making the previous choices affects the
Editor display.

2-52



Examples of Desktop Arrangements

Floating (Cascaded) Figures in Desktop Example
This example illustrates multiple figures in the desktop. By default, figures
open outside the desktop. You can arrange and adjust the figures, as follows:

• To move the figures into the desktop, click the Dock button on the menu
bar of each figure.

• To float (also called cascade) the figures, select Window > Float, or click
the Float button .

• To get more screen area for the figures, hide the document bar by selecting
Desktop > Document Bar > Bar Position > Hide.

The following image shows how making the previous choices can affect the
Desktop display.

2-53



2 Desktop

2-54



Examples of Desktop Arrangements

Undocked Tools and Documents Example
You can use tools and documents outside of the desktop as illustrated in the
example that follows.

To undock a tool and its documents:

1 Select Desktop > Undock Toolname.

2 Select Desktop > Undock Documentname from the tool.

If you undock all documents from a tool, an empty tool window remains.

To close all undocked documents and their tools at once, select
Window > Close All Documents from an undocked document window.

Notice the following in this example:

• One of the Editor documents, collatz.m, includes the name of the tool
with it.

• The other Editor document, lengthofline.m, does not include the name of
the tool with it.

If you close the Editor, the lengthofline.m document remains open, but
collatz.m closes.

• Neither of the Variable Editor documents (which appear to the right of the
Editor documents) includes the name of the tool.

This happens when you undock the Variable Editor from the desktop,
undock the variables from the Variable Editor, and then close the empty
Variable Editor window. The undocked documents in the tool remain open.

2-55



2 Desktop

2-56



Running Frequently Used Statement Groups with MATLAB® Shortcuts

Running Frequently Used Statement Groups with MATLAB
Shortcuts

In this section...

“What Is a MATLAB Shortcut?” on page 2-57

“When to Use MATLAB Shortcuts” on page 2-57

“Creating MATLAB Shortcuts — Tutorials” on page 2-58

“Running MATLAB Shortcuts” on page 2-61

“Editing and Organizing MATLAB Shortcuts” on page 2-62

“Customizing MATLAB Toolbar Shortcuts” on page 2-63

What Is a MATLAB Shortcut?
A MATLAB shortcut is an easy way to run a group of MATLAB language
statements that you use regularly. Although like a MATLAB script, MATLAB
does not save it as a script.

You can create shortcuts that you run from the Start button or the shortcut
toolbar, depending on your preferences.

MATLAB maintains shortcut information in the shortcuts.xml file. This file
is located in the folder displayed when you type prefdir in the Command
Window. It is unlikely that you will need to access this file, because MATLAB
updates it automatically.

When to Use MATLAB Shortcuts
Create MATLAB shortcuts to:

• Run a group of functions you use frequently.

For example, use a shortcut to set up your environment when you start
working. This practice is useful when you do not use a startup file, or if
there are statements you do not want to include in the startup file.

• Set the same properties for figures you create, such as adding a legend
and setting the background color.

2-57



2 Desktop

• Run a long statement, such as changing the current folder (cd) when the
path names are long.

• Run a single function that you use frequently, such as clc to clear the
Command Window.

• Run a statement that you use frequently, but have trouble remembering.

Creating MATLAB Shortcuts — Tutorials
You can create a MATLAB shortcut to run from the desktop Start button,
or from the shortcuts toolbar, as described in the tutorials that follow. Both
tutorials create a shortcut for a project called the Sea Temperature project.
For these tutorials, you set up your environment in a certain way by running
a series of MATLAB language statements. You create a shortcut called
sea_temp_env, which contains these statements. Then, you run the shortcut
to execute all the statements with a single click. The statements are:

more on
format long e
cd I:/my_MATLAB_files/sea_temp_project
clear
workspace
filebrowser
clc

Creating MATLAB Start Button Shortcuts
To create a start button shortcut, follow these steps:

1 From the Start button, select Shortcuts > New Shortcut.

2 Complete the Shortcut Editor dialog box.

a Provide a shortcut name in the Label field, for example,
sea_temp_environment.

b Put the statements in the Callback field as shown in the following
illustration. You can:

• Enter them by typing.

2-58



Running Frequently Used Statement Groups with MATLAB® Shortcuts

• Copy and paste them from a desktop tool—if prompts (>>) from the
Command Window appear, MATLAB automatically removes them
when you save the shortcut.

• Drag them from a desktop tool.

• Edit them, if necessary.

The Callback field uses the Editor preferences for keyboard shortcuts,
colors, and fonts.

c Assign a Category, which is like a folder for organizing shortcuts. For
this example, specify sea_temp_project.

d Use the default shortcuts icon , or select your own.

e Click Save.

MATLAB adds the shortcut to the Shortcuts entry in the Start button.

2-59



2 Desktop

For more information on the options in the Shortcut Editor dialog box, click
the Help button.

Creating MATLAB Toolbar Shortcuts
This example assumes that you have the following statements in the
Command Window:

more on
format long e
cd I:/my_MATLAB_files/sea_temp_project
clear
workspace
filebrowser
clc

Follow these steps:

1 If the shortcuts toolbar is not currently on the desktop, choose
Desktop > Toolbars > Shortcuts.

2 Select statements from the Command Window.

You can also select MATLAB statements from the Command History
Window or a file.

3 Drag the selection to the desktop Shortcuts toolbar.

This illustration shows highlighted statements being dragged from the
Command Window to the toolbar.

2-60



Running Frequently Used Statement Groups with MATLAB® Shortcuts

4 Create the shortcut by completing the Shortcut Editor dialog box:

a In the Label field, enter a name for the shortcut.

b In the Callback field, edit the selected statements, if necessary.

If prompts (>>) from the Command Window appear, MATLAB
automatically removes them when you save the shortcut.

c Do not change the Category field value, Toolbar Shortcuts.

For the shortcut to appear on the toolbar, this value must remain as-is.

d In the Icon field, select an icon, or keep the default.

e Click Save.

The shortcut icon and label appear on the toolbar. If you have more
shortcuts on the toolbar than the desktop can display concurrently, use the
drop-down list to access them all.

Running MATLAB Shortcuts
To run a shortcut, do one of the following:

2-61



2 Desktop

• To run a Start menu shortcut, select Start > Shortcuts. Then select the
shortcut name, or a category submenu, followed by the shortcut name.

• To run a toolbar shortcut, click its icon on the shortcuts toolbar.

All the statements in the shortcut Callback field execute. It is as if you ran
those statements from the Command Window, although they do not appear in
the Command History window.

Editing and Organizing MATLAB Shortcuts
To create categories for shortcuts, and to move, edit, and delete shortcuts,
perform these steps:

1 Open the Shortcuts Organizer dialog box, by doing one of the following:

• Click the Start button and select Shortcuts > Organize Shortcuts.

• From the shortcuts toolbar context menu, choose Organize Shortcuts.

The Shortcuts Organizer dialog box appears. When you select a shortcut
category in the dialog box, the Edit Shortcut button replaces the Rename
Category button.

2-62



Running Frequently Used Statement Groups with MATLAB® Shortcuts

2 To edit and organize shortcuts and categories, do one of the following:

• Click buttons in the dialog box.

• Right-click an item and select an action from the context menu.

Changes take effect immediately.

3 Click Close.

For more information about using the Shortcuts Organizer dialog box, click
the Help button.

Customizing MATLAB Toolbar Shortcuts
For step-by-step instructions on how to add a shortcut to the toolbar, see
“Creating MATLAB Toolbar Shortcuts” on page 2-60.

Default Toolbar Shortcuts
By default, the Shortcuts toolbar includes these two shortcuts:

• How to Add—Provides help about shortcuts and adding them to the
Shortcuts toolbar.

2-63



2 Desktop

• What’s New —Displays the Release Notes documentation.

If you want to remove one or both of these shortcuts, see “Deleting MATLAB
Shortcuts from the Toolbar” on page 2-64.

Hiding MATLAB Shortcut Labels on the Toolbar
To hide the shortcut labels on the toolbar, and leave just the shortcut icon:

1 Right-click in the Shortcuts toolbar.

2 From the context menu, select Show Labels, to clear the check mark next
to the item.

Now, when you move the mouse over a shortcut icon, its label appears
as a tooltip.

Displaying Hidden MATLAB Shortcut Labels on the Toolbar
To redisplay a shortcut label that you previously hid:

1 Right-click on the Shortcuts toolbar.

2 From the context menu, check the Show Labels item by selecting it. The
label reappears on the toolbar.

Deleting MATLAB Shortcuts from the Toolbar
To remove a shortcut:

1 Right-click the toolbar shortcut button.

2 From the context menu. select Delete.

3 Click OK in the confirmation dialog box.

Alternative Ways to Create MATLAB Shortcuts
In addition to the previously described ways to create shortcuts, you can do
any of the following:

2-64



Running Frequently Used Statement Groups with MATLAB® Shortcuts

• From the Command History window, select MATLAB language statements,
right-click, and select Create Shortcut from the context menu. By default,
MATLAB assigns shortcuts created from the Command History window to
the Toolbar Shortcuts category. Shortcuts in the Toolbar Shortcuts
category appear on the Shortcuts toolbar.

• Drag statements from a desktop tool, such as the Command History, onto
the Start button.

• Right-click the Shortcuts toolbar, and select New Shortcut. Complete
the resulting Shortcut Editor dialog box. If you maintain the Toolbar
Shortcuts category, the shortcut appears on the shortcuts toolbar.

2-65



2 Desktop

Performing Desktop Actions Using the Keyboard

Keyboard Key Combinations
As an alternative to using the mouse, you can press a combination of
keyboard keys to perform some desktop actions. MATLAB supports the use
of both mnemonics and keyboard shortcuts. The following topics explain the
differences between these two methods and how to use them:

• “What Is a Mnemonic?” on page 2-66

• “Using Mnemonics” on page 2-66

• “What Is a Keyboard Shortcut?” on page 2-67

• “Examples of Mnemonics and a Keyboard Shortcut” on page 2-67

• “Performing Desktop Actions Using Keyboard Shortcuts” on page 2-69

What Is a Mnemonic?
A mnemonic is a means of using keystrokes to perform a desktop action. For
instance, clicking a button or opening a menu, and then choosing an option. It
is called a mnemonic because it frequently uses the first letter of the menu or
menu option name. This convention helps you to remember the keystrokes
required to use the mnemonic.

Mnemonics appear as underlined letters on menus or buttons. For instance,
the F in the MATLAB File menu appears as shown in the following image.

Using Mnemonics
To open a menu or activate a button using mnemonics, press the Alt key
and the letter key indicated by the underlined letter in the menu name,
menu option name, or button name. The action occurs when you press the
letter. You also can use mnemonics to perform an action that would require
multiple mouse clicks. For example, opening the print dialog box: Alt+F, P.
For more information see “Examples of Mnemonics and a Keyboard Shortcut”
on page 2-67.

2-66



Performing Desktop Actions Using the Keyboard

Customized keyboard shortcuts can override mnemonics. For example, if you
specify Alt+F, P as the keyboard shortcut for the Delete action across the
desktop, then pressing Alt+F, P no longer opens the Print dialog box. You
cannot customize mnemonics.

Platform Differences.

• MATLAB running on the Apple Macintosh platform does not support
mnemonics.

• The Windows operating system has a setting to hide the display of
mnemonics. To display hidden mnemonics, make the MATLAB desktop the
active window, and then press the Alt key. For details, see the Windows
documentation.

What Is a Keyboard Shortcut?
A keyboard shortcut is a means of using keyboard key strokes to perform a
desktop action, without opening a desktop menu. For example, the default
keyboard shortcut for opening a file is Ctrl+O. See “Overview of Keyboard
Shortcuts” on page 2-69 for more information.

If you define a keyboard shortcut that uses the same keystrokes as a
mnemonic, but performs a different action, then the mnemonic no longer
works.

Examples of Mnemonics and a Keyboard Shortcut
The image that follows shows the desktop File menu. Notice the mnemonic
and keyboard shortcut for closing the Command Window.

2-67



2 Desktop

�������%�

(�!�����
)���%	�

• Mnemonics

In the illustration, the underlined F in File on the menu bar and the
underlined C in the Close Command Window option name indicate the
mnemonics. You can close the Command Window without using the mouse
by pressing Alt+F, C.

• Keyboard Shortcut

In the illustration, Ctrl+W, to the right of the Close Command Window
menu option indicates the keyboard shortcut. You can close the Command
Window without opening the File menu by pressing Ctrl+W.

2-68



Performing Desktop Actions Using Keyboard Shortcuts

Performing Desktop Actions Using Keyboard Shortcuts

In this section...

“Overview of Keyboard Shortcuts” on page 2-69

“Choosing a Set of Keyboard Shortcuts” on page 2-70

“Comparing Sets of Keyboard Shortcuts” on page 2-74

“Displaying Keyboard Shortcuts” on page 2-75

“Customizing Keyboard Shortcuts” on page 2-79

“Evaluating and Resolving Keyboard Shortcut Conflicts” on page 2-85

“Examples of Creating, Modifying, and Deleting Keyboard Shortcuts” on
page 2-87

“Deleting a Set of Keyboard Shortcuts” on page 2-90

“Using Keyboard Shortcuts Settings Files Created on Other Systems” on
page 2-91

“Keyboard Shortcut Restrictions” on page 2-91

Overview of Keyboard Shortcuts
A keyboard shortcut is a means of using keyboard key strokes to perform
a desktop action, without opening a desktop menu. If a keyboard shortcut
is assigned to an action, it appears next to that action on the menu and as
a tooltip for that action on the toolbar. For example, the default keyboard
shortcut for opening a file is Ctrl+O.

A tooltip for the action also appears on the Editor toolbar.

2-69



2 Desktop

An action can have multiple keyboard shortcuts. All defined shortcuts work,
but only one appears on the desktop menu and as a toolbar tooltip.

You can:

• Choose from a set of shortcuts that install with MATLAB.

• Create customized sets of shortcuts.

• Use a set of shortcuts copied from another system

Choosing a Set of Keyboard Shortcuts
By default, MATLAB uses keyboard shortcut settings that corresponds to the
platform on which you are running. To choose different keyboard shortcut
settings, follow these steps:

1 Open the Keyboard Shortcuts Preferences dialog box by choosing
File > Preferences > Keyboard > Shortcuts.

2 Click the down arrow in the Active settings field, and make a selection
from the drop-down list, as summarized in this table.

Settings File Option to Select Details

Installed with
MATLAB

Windows Default Set or
Emacs Default Set

For a description of
the files that install
with MATLAB, see
“Installed Settings Files
for Keyboard Shortcuts”
on page 2-71

You previously
added

The file name No additional
information.

2-70



Performing Desktop Actions Using Keyboard Shortcuts

Settings File Option to Select Details

On your system,
but not in the
drop-down list

Browse “Browsing to Keyboard
Shortcuts Settings Files”
on page 2-71

Created by
someone else
and uploaded to
File Exchange

Search File Exchange
for Downloadable
Shortcut Sets

“Downloading Keyboard
Shortcut Settings Files
from File Exchange ” on
page 2-72.

MATLAB
keyboard
shortcuts
available in
Version 7.9
(R2009a) and
earlier releases

Search File Exchange
for Downloadable
Shortcut Sets

“Downloading Keyboard
Shortcut Settings Files
from File Exchange ” on
page 2-72.

3 Click Apply.

Installed Settings Files for Keyboard Shortcuts
The following table lists the keyboard shortcuts settings files installed with
MATLAB.

Operating
System

Keyboard Shortcut Settings Files Installed with
MATLAB

Windows • Windows Default Set (Default)

• Emacs Default Set

UNIX • Emacs Default Set (Default)

• Windows Default Set

Macintosh • Macintosh Default Set (Default)

Browsing to Keyboard Shortcuts Settings Files
Browse to use a keyboard shortcuts settings file that is on your system, but
not an Active settings choice in the Keyboard Shortcuts Preferences dialog
box. This situation typically arises when you copy a settings file from another

2-71



2 Desktop

system to a folder other than the prefdir directory. To browse to a settings
file and make it your active settings file, follow these steps:

1 Choose File > Preferences > Keyboard > Shortcuts.

2 In the Active settings field, click the down arrow, and then select Browse.

3 In the Open dialog box, navigate to the folder containing the settings file.

4 Select the settings file, and then click Open.

5 In the Keyboard Shortcuts preferences pane, click OK.

The settings file you selected in step 4 is now the active settings file for
MATLAB.

Future MATLAB sessions will provide this settings file as a choice in the
Active settings drop-down menu.

Downloading Keyboard Shortcut Settings Files from File
Exchange
Download keyboard shortcut settings files from File Exchange when you want
to do either of the following:

• Restore the MATLAB default keyboard shortcuts that were in place for the
Windows platform in Version 7.9 (R2009a) and earlier releases.

• Find and download keyboard shortcuts that others created and uploaded to
File Exchange.

Follow these steps:

1 Choose File > Preferences > Keyboard > Shortcuts.

2 In the Active settings field, click the down arrow, and then select Search
File Exchange for Downloadable Shortcut Sets.

MATLAB opens File Exchange.

3 Enter your MathWorks account information, and then click Submit.

2-72



Performing Desktop Actions Using Keyboard Shortcuts

If you do not have a MathWorks account, create one by clicking Create an
account, and then completing the form that opens in your Web browser.

4 Search File Exchange for the keyboard shortcut set that you want to use.

When you follow the steps presented so far, File Exchange lists all files
tagged with keyboard shortcuts configurable including:

• MATLAB Desktop R2009a Non-Default Keyboard Shortcut sets

• MATLAB Desktop R2009a Default Keyboard Shortcut sets

For a description, click the file name in the File Summary column of File
Exchange. Click the Back button to return to the list of files.

5 Click the download button next to the file you want to download.

6 Respond to the Download MATLAB Desktop confirmation dialog boxes as
follows:

a Click Download.

b Click Change Current Folder to Download Location.

The downloaded .ZIP file appears in the Current Folder Browser. Expand
it to preview its contents.

7 In the Current Folder browser, right-click the downloaded .ZIP file, and
then select Extract.

MATLAB creates a subfolder with the same name as the .ZIP file and
extracts the files from that .ZIP file into the newly created folder.

8 In the Current Folder browser, expand the newly created folder, and then
double-click the settings file you want to use.

A keyboard key icon preceding a file name indicates a valid keyboard
shortcut settings file.

9 In the Keyboard Shortcuts Preferences dialog box, review the settings,
and then click OK.

The newly downloaded settings file is now in effect.

2-73



2 Desktop

Comparing Sets of Keyboard Shortcuts
Compare sets of keyboard shortcuts to:

• Upgrade MATLAB from a version before Version 7.9 (R2009b).

MATLAB 7.9 made keyboard shortcuts consistent across the desktop.
Therefore, you might find that shortcuts you used before Version 7.9 are
different.

• See how a set of keyboard shortcuts you found on File Exchange differs
from your current set of keyboard shortcuts.

• See how a set of keyboard shortcuts differs from the default set.

Steps for Comparing Keyboard Shortcuts
To compare your current set of keyboard shortcuts to another set:

1 Choose File > Preferences > Keyboard > Shortcuts.

2 Click the Actions button .

3 From the drop-down menu, choose the set of keyboard shortcuts to which
you want to compare the current set.

4 The Comparison Tool opens and displays the two keyboard shortcut sets
side-by-side.

Reading the Results of Comparing Sets of Keyboard Shortcuts
When you compare keyboard shortcut sets, they appear in the Comparison
Tool as follows:

• One set displays on the left side of the tool and the other set displays on the
right side of the tool.

• Each column header displays the name of the keyboard shortcut set
contained within the column.

• Highlighting identifies rows that differ:

- Rows that exist in one file, but not the other, appear in green
highlighting.

2-74



Performing Desktop Actions Using Keyboard Shortcuts

- Rows that appear in both files, but that differ in content appear in pink
highlighting.

• When multiple desktop tools support the same keyboard shortcut for a
single desktop action, there is a row for each tool. For example, if both the
MATLAB desktop and the Editor support the keyboard shortcut Ctrl+W
for closing a selected window, a column of the Comparison Tool might
appear like this:

• When there are multiple keyboard shortcuts for the same action in a single
tool, there is a row for each keyboard shortcut. For example, if there are
two different keyboard shortcuts in the Editor for applying a code analyzer
autofix, a column of the Comparison Tool might appear like this:

• On Macintosh platforms, the textual format of keyboard shortcuts
is slightly different from other platforms, and also differs from the
representation shown on MATLAB desktop menus. These differences
are due to the Macintosh platform displaying shortcuts using symbols.
For instance, the Macintosh platform uses the symbol for a keyboard
key. Because the Comparison Tool represents symbols as text strings;
it specifies the symbol as CMD.

See also “Using Features of the Comparison Tool” on page 7-63.

Displaying Keyboard Shortcuts
The following sections describe the various ways you can display keyboard
shortcuts:

• “Listing All Keyboard Shortcuts in a Set” on page 2-76

• “Displaying Keyboard Shortcuts on Menus” on page 2-76

• “Displaying Keyboard Shortcuts in the Preferences Dialog Box” on page
2-77

2-75



2 Desktop

Listing All Keyboard Shortcuts in a Set
You can copy all the keyboard shortcuts from a keyboard shortcuts set and
paste them in a text file or spreadsheet application, such as Microsoft®

Excel®. To create a list of keyboard shortcuts for easy browsing and future
reference, follow these steps:

1 Choose File > Preferences > Keyboard > Shortcuts.

2 Click the Actions button .

3 From the drop-down menu, choose Copy to Clipboard.

4 Open a spreadsheet application or a text editor.

For the best formatting use a spreadsheet application.

5 Paste in the data from the clipboard.

In Microsoft Excel, for example, choose Home > Paste.

Displaying Keyboard Shortcuts on Menus
Open the menu to see if the keyboard shortcut appears next to the menu
option.

For example, suppose you want to determine the keyboard shortcut for
decreasing the indent in the Editor. Open the Text menu, and then view
the keyboard shortcut for Decrease Indent. The keyboard shortcut Ctrl+[
appears to the right of the option.

2-76



Performing Desktop Actions Using Keyboard Shortcuts

If no keyboard shortcut appears on the menu, one does not currently exist for
that action. To create a keyboard shortcut for an action, follow the steps in
“Customizing Keyboard Shortcuts” on page 2-79.

Displaying Keyboard Shortcuts in the Preferences Dialog Box
To identify a keyboard shortcut when there is no menu option for an action,
use the Keyboard Shortcuts Preferences pane:

1 Choose File > Preferences > Keyboard > Shortcuts.

2 In the filter field, type the name of the tool for which you want to list
the keyboard shortcuts. For example, type Editor to see the keyboard
shortcuts currently defined for actions you can perform in the Editor.

2-77



2 Desktop

3 Narrow the list of Action names that the preferences pane displays by
adding a string describing the action. For example, add clear, if you want
to find the keyboard shortcut for clearing selected text in the Editor. Type
a short string to increase the likelihood of the filter returning the action
you seek.

2-78



Performing Desktop Actions Using Keyboard Shortcuts

4 Select the action name of interest. In this example, select Clear
Selection.

5 View the table labeled Shortcuts for Clear Selection. It indicates that
the Escape key is the current keyboard shortcut for the Clear Selection
action in the Editor.

Customizing Keyboard Shortcuts
To customize or view keyboard shortcuts for MATLAB desktop tools, choose
File > Preferences > Keyboard > Shortcuts. If you have an active
Internet connection, you can watch the Customizable Keyboard Shortcuts
video for an overview.

The following sections provide details:

• “Steps for Customizing Keyboard Shortcuts” on page 2-80

• “Filtering Keyboard Shortcut Actions” on page 2-83

• “Specifying Keystrokes for a Keyboard Shortcut” on page 2-84

• “Evaluating and Resolving Keyboard Shortcut Conflicts” on page 2-85

• “Examples of Creating, Modifying, and Deleting Keyboard Shortcuts” on
page 2-87

• “Keyboard Key Combinations” on page 2-66

• “Displaying Keyboard Shortcuts” on page 2-75

Consider using File Exchange to share your active settings file with others.
For more information, see “Submitting Your Files to the Repository” on page
8-41.

2-79



2 Desktop

Steps for Customizing Keyboard Shortcuts

1 Choose File > Preferences > Keyboard > Shortcuts.

2 In the Active settings field, choose the file that contains the set of
keyboard shortcuts that you want to customize.

Typically, the first time you modify keyboard shortcuts, you begin with
the default settings for your platform. For details, see “Choosing a Set of
Keyboard Shortcuts” on page 2-70.

3 Under Action name, select the action for which you want to define or
modify a keyboard shortcut. An action is the operation for which you want
to customize the shortcut, such as Clear Command History.

For tips on finding the action you want, see “Filtering Keyboard Shortcut
Actions” on page 2-83.

4 Click the Add button .

An editable field opens under the Shortcut column.

5 Type the shortcut that you want to use for the action you selected in Step 3.
Alternatively, you can choose a shortcut from the drop-down menu.

For details, see “Specifying Keystrokes for a Keyboard Shortcut” on page
2-84.

6 Assign the shortcut to the tool or tools with which you want to use it. For
example, in the Tools with shortcut column:

a Click the down arrow for the list of desktop tools to which you can
assign a shortcut. Not all actions are available with all desktop tools.

2-80



Performing Desktop Actions Using Keyboard Shortcuts

b Select a check box to assign the shortcut to a tool. Clear a check box
to remove it.

7 Evaluate and resolve any conflicts, indicated by the informational and
error icons.

For more information, see “Evaluating and Resolving Keyboard Shortcut
Conflicts” on page 2-85.

8 Click Apply.

• The keyboard shortcut becomes available immediately.

• If a changed shortcut corresponds to a menu option that previously
displayed no keyboard shortcut, MATLAB reflects the new keyboard
shortcut on the menu.

Restoring Default Keyboard Shortcut Sets
If you modify keyboard shortcuts, and then decide you do not want to keep
the changes, you can restore the default shortcuts. To restore the default
state of a keyboard shortcut:

1 Click the Actions button .

2 Select Undo Modifications to Windows Default Set (modified) or
Undo Modifications to Emacs Default Set (modified), as appropriate
for your system.

3 Click OK.

2-81



2 Desktop

Note Undoing modifications reverts all keyboard shortcuts changes that you
made to the set. You cannot undo modifications on a shortcut-by-shortcut
basis.

Saving Keyboard Shortcuts to a Settings File
Save keyboard shortcuts to a settings file to:

• Save changes you make to a default settings file, such as the Windows
default set, to a new set.

MATLAB preserves changes you make to the default sets across sessions.
However, if you undo modifications to a default keyboard shortcut set (as
described in “Restoring Default Keyboard Shortcut Sets” on page 2-81) you
lose all changes, unless you first save them to a new set.

• Copy the keyboard shortcuts settings file to another system running
MATLAB and use it there.

• Overwrite a settings file that you previously saved.

You cannot overwrite the default settings files that install with MATLAB.
MATLAB saves modifications that you make to a default set using the
name of the default set appended with the text (modified). For instance,
Windows default (modified).

• Share a keyboard shortcuts settings file with others.

For information on sharing your active settings file with the MATLAB
community, see “Submitting Your Files to the Repository” on page 8-41.

To save a keyboard shortcuts settings file, follow these steps:

1 Open the Keyboard Shortcuts Preferences dialog box by choosing
File > Preferences > Keyboard > Shortcuts.

2 Click the Actions button , and then select Save As.

3 In the Save dialog box, navigate to the folder where you want to save the
file, specify the file name, and then click Save.

MATLAB saves the file as an .xml file in the folder that you specified.

2-82



Performing Desktop Actions Using Keyboard Shortcuts

Filtering Keyboard Shortcut Actions
Use the filter field to see the list of actions for which you can customize or
define a keyboard shortcut:

1 Type all or part of any one of the following:

• An action name, for example, Delete.

MATLAB displays only the action names or desktop menus that contain
the text you specify.

• The name of a desktop tool or menu, for example, File or Command
Window.

MATLAB displays a list of the action names associated with the tool
or menu you specify. In addition, the list includes any action names
that contain the name of the tool or menu. For example, if you specify
Command History, the list of action names includes Next History
Command, which is a Command Window action.

• A keyboard shortcut, for example, Ctrl+R

MATLAB displays only the action names that have the shortcut you
specify. Be aware of the following:

– You can enter most keyboard shortcuts by either pressing keystrokes
or typing the key names.

For example, to enter Ctrl+S, use the keystroke (by pressing the
Ctrl key and the S key). Or, type Ctrl+S character by character
(C-t-r-l-+-Y).

– If using keystrokes for a keyboard shortcut does not work, try typing
the characters instead. You must type some keyboard shortcuts
character by character, such as shortcuts including the Tab,
Backspace, or Delete keys.

– Type numpad to refer to the number pad that is on the far right of
some keyboards.

– Type Up or Down to refer to the Up arrow or Down arrow keypad
keys, respectively.

2 Verify that an Action name performs the action you expect:

2-83



2 Desktop

a Hover the mouse pointer over the Action name. For example, Remove
Next Word.

b View the tooltip that appears.

Specifying Keystrokes for a Keyboard Shortcut
A keystroke can be a single key or the combination of a modifier (Alt, Shift,
or Ctrl) and another key. When you create a keyboard shortcut, specify the
keystrokes for the shortcut as follows:

1 Click the Add button .

2 Specify the number of keystrokes you want to use for the shortcut:

• To use the default number of keystrokes, which is one keystroke, skip to
step 3.

• To specify multiple keystrokes, or to specify explicitly one keystroke
follow these steps:

a Click the down arrow next to the key icon in the Shortcuts field.

b Choose Limit to 1 keystroke, Limit to 2 keystrokes, or Limit
to 3 keystrokes.

For instance, Ctrl+F is one keystroke, Ctrl+Y, Shift+Z is two
keystrokes, and Ctrl+Y, Shift+Z, F9 is three keystrokes.

3 Specify the keystrokes by doing one of the following:

2-84



Performing Desktop Actions Using Keyboard Shortcuts

• Type the keystrokes, by pressing the keys, not by typing the key names
character by character.

For example, press the Ctrl key and the Y key. Do not type C-t-r-l-+-Y.

• Choose a keystroke, such as the Tab key, by clicking the down arrow next
to the key icon in the Shortcuts field. Then, choose the key name.

The listed keys already have a defined action within dialog boxes. For
example, the Tab key navigates from one field to the next in dialog boxes.

Evaluating and Resolving Keyboard Shortcut Conflicts
Conflicts arise when two or more different actions have the same shortcut.
There is no requirement that you resolve keyboard shortcut conflicts.
However, if the same shortcut specifies two different actions, the shortcuts
can be confusing to use.

View keyboard shortcut conflicts by choosing
File > Preferences > Keyboard > Shortcuts.

The Keyboard Shortcuts preferences pane indicates conflicts using
informational and error icons.

• —An informational icon indicates that two different actions in two
different tools have the same shortcut. For information on resolving these
conflicts, see “Actions in Different Tools Have the Same Shortcut —
Evaluating Conflicts” on page 2-85.

• —An error icon indicates that two different actions within the same
tool have the same shortcut. For information on resolving these conflicts,
see “Actions in the Same Tool Have the Same Shortcut — Evaluating
Conflicts” on page 2-86.

Actions in Different Tools Have the Same Shortcut — Evaluating
Conflicts
Typically, you want to resolve conflicts indicated by the informational icon
when all the following are true:

• You use both tools frequently.

• You perform both actions frequently.

2-85



2 Desktop

• You have difficulty remembering the action that the shortcut performs
in each tool.

For instance on Microsoft Windows platforms, by default, Ctrl+Shift+U
undocks a tool from the MATLAB desktop. However if you select text in
the Editor, and then press Ctrl+Shift+U, it changes the selected text to
uppercase. If you frequently use both of these actions, you can specify a
different keyboard shortcut for one or both actions.

Actions in the Same Tool Have the Same Shortcut — Evaluating
Conflicts
Typically, you want to resolve conflicts indicated by the error icon .

It can be unnecessary to resolve these conflicts if one or more of the following
are true:

• The situation is temporary.

For instance, you are performing a two-step procedure. In the first step,
you assign the keyboard shortcut to an action that results in a conflict.
Then, in the second step, you remove the shortcut from the original action.

• The two actions are associated with different modes of the same tool.

By default, when the MATLAB Editor is in cell mode, Ctrl+Up and
Ctrl+Down move the cursor to the Next and Previous cell, respectively.
When the Editor is not in cell mode, those keyboard shortcuts scroll up and
scroll down, respectively. The shortcuts are in conflict, but the behavior
probably is expected, for the given MATLAB Editor mode.

Although not evident from the preferences pane, Ctrl+C presents a similar
situation on Windows systems. Ctrl+C is the keyboard shortcut for
interrupting MATLAB execution. However, the default keyboard shortcut
for the copy action is also Ctrl+C. Therefore, if you:

- Select an item, and then press Ctrl+C, it copies the selected item to the
clipboard, — regardless of whether MATLAB is busy.

- Do not select an item and press Ctrl+C, it interrupts MATLAB
execution.

2-86



Performing Desktop Actions Using Keyboard Shortcuts

If you change the default keyboard shortcut for the copy action from
Ctrl+C to another keystroke, then Ctrl+C interrupts MATLAB execution,
regardless of whether you have selected an item.

Resolving Keyboard Shortcut Conflicts
To resolve a conflict, change or delete shortcuts such that there is a one-to-one
correspondence between a shortcut and a frequently used action. For
examples, see “Changing a Keyboard Shortcut” on page 2-88 and “Deleting
a Keyboard Shortcut” on page 2-89.

Examples of Creating, Modifying, and Deleting
Keyboard Shortcuts

• “Creating a New Keyboard Shortcut” on page 2-87

• “Changing a Keyboard Shortcut” on page 2-88

• “Deleting a Keyboard Shortcut” on page 2-89

Creating a New Keyboard Shortcut
By default, no keyboard shortcut is available for adding a Help topic to the
list of favorites. If you frequently mark topics as favorites, you can define a
keyboard shortcut for this action, as follows:

1 Choose File > Preferences > Keyboard > Shortcuts.

2 In the filter field, type Help.

3 Scroll through the Action name list, and select Add to Favorites.

4 Click the plus button

MATLAB adds a row to the table above the plus button.

5 In the Shortcut field, click the down arrow, and then change Limit to 1
keystroke to Limit to 2 keystrokes.

6 In the Shortcut field, press Ctrl+S, and then Alt+V.

2-87



2 Desktop

Notice that the All Possible Conflicts table is empty, which indicates that
no other desktop action is currently using this combination of keystrokes.

7 Click Apply.

Notice that:

• The Add to Favorites dialog box opens when you press Ctrl+S, Alt+V
in the Help browser.

• Ctrl+S, Alt+V appears next to Add to Favorites when you click the
Favorites menu in the Help browser.

Changing a Keyboard Shortcut
Suppose you frequently adjust indenting in the MATLAB Editor. However,
you have difficulty remembering the default keyboard shortcut of Ctrl+[
for decreasing the indent. So, you decide to change it to something that is
easier to remember.

This example changes the keyboard shortcut for Decrease Indent in the
MATLAB Editor from Ctrl+[ to Ctrl+Backspace:.

1 Choose File > Preferences > Keyboard > Shortcuts.

2 Under Active settings, choose Windows Default Set.

3 In the filter field, press Ctrl+[.

4 Under Action name, select Decrease Indent.

2-88



Performing Desktop Actions Using Keyboard Shortcuts

5 In the table labeled Shortcuts for Decrease Indent, under Shortcut,
click Ctrl+[. MATLAB makes the field editable.

6 In the Shortcut field, press Ctrl+Backspace twice.

The first time you press the key combination, it deletes Ctrl+[. The second
time you press it, Ctrl+Backspace appears in the field.

7 Click Apply.

MATLAB saves your changes to the Windows Default Set (modified)
settings.

Deleting a Keyboard Shortcut
Suppose you find yourself frequently pressing the wrong keyboard shortcut.
For example, on Windows, you press Alt+Enter (to apply a code analyzer
autofix) instead of Ctrl+Enter (to evaluate the current cell in the MATLAB
Editor ). To avoid accidentally applying an autofix, delete the Alt+Enter
shortcut by following these steps:

1 Choose File > Preferences > Keyboard > Shortcuts.

2 Under Active settings, choose Windows Default Set or Windows
Default Set (modified).

3 In the filter field, press Alt+Enter.

4 Under Action name, select the row containing Autofix Message.

5 In the next table, under Shortcut, select the row containing Alt+Enter.

2-89



2 Desktop

6 Click the remove button .

7 Click Apply.

If it does not exist, MATLAB creates a Windows Default Set (modified)
keyboard shortcut set. This set consists of the Windows Default Set
of keyboard shortcuts, less the shortcut for Alt+Enter. If the Windows
Default Set (modified) settings file exists, then MATLAB deletes the
Alt+Enter keyboard shortcut from that set of keyboard shortcuts.

See also “Deleting a Set of Keyboard Shortcuts” on page 2-90.

Deleting a Set of Keyboard Shortcuts
If you previously saved or copied a set of keyboard shortcuts to your system
and you no longer want it, delete it as follows:

1 Choose File > Preferences > Keyboard > Shortcuts.

2 Under Active settings, choose the set of keyboard shortcuts that you
want to delete.

You cannot delete default keyboard shortcut sets, such as Windows
Default Set.

3 Click the Actions button and choose Delete filename, where filename
is the name of a keyboard shortcut set you previously saved or copied to
your system.

For information on deleting a single keyboard shortcut from a set that you
want to keep, see “Deleting a Keyboard Shortcut” on page 2-89.

2-90



Performing Desktop Actions Using Keyboard Shortcuts

Using Keyboard Shortcuts Settings Files Created on
Other Systems
If you find a keyboard shortcuts settings file that is useful to you, or if you
want to use one you created on a different system, make it the active settings
file as follows:

1 Copy the settings file to a folder on your system, such as:

I:\my_matlab_files\active_settings_files\new_settings.xml

2 Choose File > Preferences > Keyboard > Shortcuts.

3 In the Active settings field, click the down arrow, and then click Browse.

4 In the Open dialog box, navigate to the folder where you copied the settings
file.

5 Select the settings file, and then click Open.

6 In the Keyboard Shortcuts preferences pane, click Apply. The settings file
you specified is now the active settings file for MATLAB.

Consider using File Exchange to share your active settings file with others, or
to find a file that is useful to you. For more information on File Exchange,
see Chapter 8, “File Exchange — Finding and Getting Files Created by Other
Users”.

Keyboard Shortcut Restrictions
These sections describe the tools, portions of tools, and actions for which you
cannot change keyboard shortcuts:

• “Tools for Which You Cannot Customize Keyboard Shortcuts” on page 2-91

• “Actions for Which You Cannot Customize Keyboard Shortcuts” on page
2-92

Tools for Which You Cannot Customize Keyboard Shortcuts
You cannot change the keyboard shortcuts associated with the following tools
or portions of tools:

2-91



2 Desktop

• Figure windows—For example, you cannot modify the keyboard shortcut,
Ctrl+S, for saving a MATLAB .fig file.

• Toolboxes—For example, you cannot modify keyboard shortcuts in the
SimBiology® desktop.

• Incremental search—You can modify the keyboard shortcuts for initiating
a forward or backward incremental search. However, you cannot change
the keyboard shortcuts that you use within incremental search mode, such
as Ctrl+Shift+S to search forward.

• Dialog boxes—For example, you cannot create a keyboard shortcut for
the OK button.

Actions for Which You Cannot Customize Keyboard Shortcuts
The following table describes some frequently used actions for which you
cannot customize keyboard shortcuts.

Action Keyboard Shortcut

Cancel the current action. Esc (escape)

For example, if you select the Edit menu, the menu items
display. Pressing Esc retracts the menu items.

In the Function Browser, pressing Esc up to three times
has the following effects:

1 Dismisses the search history

2 Clears the search field

3 Closes the Function Browser

Interrupt MATLAB execution on
all supported platforms.

Ctrl+C

Interrupt MATLAB execution on
Windows and UNIX systems.

Ctrl+Cancel

Interrupt MATLAB execution on
Macintosh systems.

Cmd+. (period)

2-92



Performing Desktop Actions Using Keyboard Shortcuts

Action Keyboard Shortcut

Open context menu on Windows
and UNIX systems.

Ctrl+Shift+F10

Close the desktop and consequently
shut down the MATLAB program.
Outside the desktop, close
the active window (except on
Macintosh platforms).

Alt+F4

Accessibility affordances Tab for navigating through fields in dialog boxes, for
example.

Make an open tool the active tool These shortcuts appear on the desktopWindows menu:

• Command Window: Ctrl+0

• Command History: Ctrl+1

• Current Folder: Ctrl+2

• Editor: Ctrl+Shift+0

• Figures: Ctrl+Shift+1

• Figure Palette: Ctrl+7

• Comparison Tool: Ctrl+Shift+4

• File Exchange: Ctrl+6

• Help: Ctrl+4

• Plot Browser: Ctrl+8

• Profiler: Ctrl+5

• Variable Editor: Ctrl+Shift+3

• Web Browser: Ctrl+Shift+2

• Workspace: Ctrl+3

2-93



2 Desktop

Accessing Tools with the Start Button

In this section...

“Viewing Products and Tools with the Start Button” on page 2-94

“Adding Your Own Toolboxes to the Start Button” on page 2-96

The MATLAB Start button provides easy access to tools, demos, and
documentation for all your MathWorks products. From the Start button, you
also can create and run MATLAB shortcuts, which are groups of MATLAB
language statements.

Viewing Products and Tools with the Start Button

1 Click the Start button to view a menu of product categories and desktop
tools installed on your system. As an alternative, press Alt+S (except on
Apple Macintosh platforms). In the following illustration, the Start button
shows MATLAB selected.

2-94



Accessing Tools with the Start Button

2 From the menu and submenu items, select an item to open. The icons
help you quickly locate the item you want—see the icon descriptions in the
following table.

For example, to open plot tools, select Start > MATLAB > Plot Tools.

2-95



2 Desktop

Identifying Start Button Menu Icons
The icons on the Start button menu help you quickly locate a particular type
of product or tool. This table describes the action performed when you select
an entry with one of these icons in the Start button.

Icon Description of Action When Opened

Documentation for that product opens in the Help browser.

A list of demos for the product appears in the Help browser
Demos pane.

Selected tool opens.

Block library opens.

Document opens in your system Web browser.

Adding Your Own Toolboxes to the Start Button
If you author a collection of MATLAB program files or Simulink blocks,
you can provide access to its features via the Start button. A collection of
MATLAB program files is called a toolbox. A collection of Simulink blocks is
called a blockset. (For background information about the Start button, see
“Accessing Tools with the Start Button” on page 2-94.)

MATLAB determines the information to display on the Start button using
info.xml files that are in folders on the search path. These XML files also
contain information to place entries for toolbox and blockset documentation
in the Contents pane of the Help browser. To add your toolbox to the Start
button:

1 Make your current folder the folder containing your toolbox files.

2 Copy the template file info_template.xml to one you name info.xml in
your current folder. If you have set up HTML files for your toolbox, you
have already created an info.xml file for it. See “More About Adding Items
to the Start Button” on page 2-97 for details.

3 Add a <list> </list> element as the last element within <productinfo>.
Put the <list> after the <help_location> element, if any.

2-96



Accessing Tools with the Start Button

Within the <list>, add a <listitem> for each item you add to the Start
menu for the toolbox. For example:

<list>

<listitem>

<!-- The label provides the text for this menu item -->

<label>MyToolbox Documentation</label>

<!-- This callback is a command to open your documentation -->

<callback>web ./helpfiles/mytoolbox_product_page.html -helpbrowser</callback>

<!-- Menu item icon (a toolbox icon from the help browser ) -->

<icon>$toolbox/matlab/icons/bookicon.gif</icon>

</listitem>

<listitem>

...

</listitem>

...

</list>

Each <callback> element contains a complete MATLAB command
specifying the action triggered by selecting that menu item. <icon>
elements identify Start menu item icons. For a table of standard icons that
you can use, see “More About the helptoc.xml File” on page 5-32.

4 Include the info.xml file in your toolbox folder, along with your toolbox
program files and documentation files.

5 Add the toolbox folder to the search path. Refresh the Start button, if a
Toolboxes item does not appear.

6 If you are providing the toolbox to others, instruct them to perform the
previous step themselves after they start MATLAB .

If you also include HTML documentation for your toolbox for display in the
Help browser, put the Help browser and Start button XML code into a single
info.xml file.

More About Adding Items to the Start Button
The template XML file called info_template.xml includes code to
add menu items for a toolbox to the Start menu. This directory is
matlabroot/help/techdoc/matlab_env/examples/templates. <icon>

2-97



2 Desktop

elements in that file specify icon image files to use in the Start menu. You
can use an example icon image file, sampleicon.gif, contained in the
/examples/templates folder. To display a custom icon, substitute your own
image file name for sampleicon.gif in your info.xml file. Put your icon file
in the same folder that info.xml occupies.

For instructions on copying and using the sample info_template.xml file,
see “Identifying a Help Folder: the info.xml File” on page 5-24. This file
contains a <list> element that you can modify to customize what appears
on the Start button for your toolbox. You can remove <list> elements or
include additional ones.

When you have created a info.xml file in your toolbox folder containing
<list> elements for your Start menu items (or have copied the Upslope
Toolbox example files, which include a complete info.xml file):

1 Add the folder containing info.xml to the search path. The folder cannot
be the current folder when you add it to the path.

See “Adding Folders to the Search Path” on page 7-75.

2 Click the Start button and then click the Toolboxes item. If you set up
everything properly, you see an entry your toolbox, similar to the following
illustration.

2-98



Accessing Tools with the Start Button

If you do not see your toolbox on the Start button, you might need to refresh
the Start button so it can locate your info.xml file. Try the following:

a Select Start > Desktop Tools > View Start Button Configuration
Files.

The Start Button Configuration Files dialog box opens.

2-99



2 Desktop

b Click Refresh Start Button.

c Click Close to close the dialog box.

3 Ensure there are no errors. If, when interpreting your info.xml file,
MATLAB detects an invalid construct, it displays an error message in the
Command Window. For more information, see “Addressing Validation
Errors for info.xml Files” on page 5-61 and “Addressing Validation Errors
for info.xml Files” on page 5-61,

For more information about setting up an info.xml file, see “Adding HTML
Help Files to the Help Browser” on page 5-17.

2-100



Using Web Browsers in MATLAB®

Using Web Browsers in MATLAB

In this section...

“About Web Browsers in MATLAB” on page 2-101

“Displaying Pages in Web Browsers” on page 2-103

“Web Preferences” on page 2-104

About Web Browsers in MATLAB
From MATLAB, Web sites and documents can display in any of the following
browsers:

• MATLAB Web browser

• Help browser

• Your system Web browser, such as Mozilla® Firefox®

MATLAB uses the different browsers to display different types of information:

• Web sites display in your system browser.

• Documentation and demo pages display in the Help browser.

• Other HTML files display in the MATLAB Web Browser. For example,
after publishing a MATLAB program file to HTML, the HTML file displays
in the MATLAB Web Browser:

2-101



2 Desktop

2-102



Using Web Browsers in MATLAB®

MATLAB Web and Help Browsers
Because the MATLAB Web and Help browsers are desktop tools, you can
perform desktop operations on them, such as docking the tools in the desktop.
For more information, see Chapter 2, “Desktop”.

The MATLAB Web and Help browsers may not support all the features
that a particular Web site or HTML page uses. For example, the MATLAB
Web Browser does not display .bmp (bitmap) image files. Instead use .gif
or .jpeg formats for image files in HTML pages.

System Browser
The system browser that MATLAB uses depends on your platform:

• On Microsoft Windows and Apple Macintosh platforms, MATLAB uses the
default browser for your operating system.

• On UNIX platforms, MATLAB uses the Mozilla Firefox browser. You can
specify a different system browser for MATLAB using Web preferences.

Displaying Pages in Web Browsers
To display an HTML document in the MATLAB Web Browser, double-click
the document name in the Current Folder browser.

To display a Web page or any file type in the MATLAB Web Browser:

1 Select Desktop > Web Browser.

An empty MATLAB Web browser window opens.

2 Type a URL or full path to a filename in the Location field.

To open a link to another page in a separate MATLAB Web browser window,
click the middle mouse button, if you have one.

To open any type of document in any type of Web browser MATLAB supports,
use the web function. Specify a URL or file to display, and the type of browser
to use.

2-103



2 Desktop

Web Preferences
Use Web preferences to specify characteristics related to accessing the
Internet:

• “Specifying Proxy Server Settings” on page 2-104

• “Specifying the System Browser for UNIX Platforms” on page 2-106

• “Specifying Fonts for the MATLAB Web Browser” on page 2-107

Specifying Proxy Server Settings
If your network uses a firewall or another method of protection that restricts
Internet access, provide information about your proxy server to MATLAB.

To specify the proxy server settings:

1 Select File > Preferences > Web.

2 Select the Use a proxy server to connect to the Internet check box:

3 Specify values for Proxy host and Proxy port. Examples of acceptable
formats for the host are: 172.16.10.8 and ourproxy. For the port, enter
only an integer, such as 22. If you do not know the values for your proxy
server, ask your system or network administrator for the information.

If your proxy server requires a user name and password, select the Use
a proxy with authentication check box. Then enter your proxy user
name and password.

Note MATLAB stores the password without encryption in your
matlab.prf file.

4 Ensure that your settings work by clicking the Test connection button.

MATLAB attempts to connect to http://www.mathworks.com:

• ser.xml;

2-104



Using Web Browsers in MATLAB®

If MATLAB can access the Internet, Success! appears next to the
button.

• If MATLAB cannot access the Internet, Failed! appears next to the
button. Correct the values you entered and try again. If you still cannot
connect, try using the values you used when you authenticated your
MATLAB license.

5 Click OK to accept the changes.

After specifying the preference, you can access the Internet from MATLAB
through your proxy server.

Limitations of Specifying Proxy Server Settings.

• MATLAB supports non-authenticated, basic, digest, and NTLM proxy
authentication types.

2-105



2 Desktop

• You cannot specify the proxy server settings using a script.

• There is no automated way to provide the proxy server settings your system
browser uses to MATLAB.

Specifying the System Browser for UNIX Platforms
For background information, see “System Browser” on page 2-103. To specify
the system browser:

1 Select File > Preferences > Web. The Preferences dialog box opens to
the Web pane.

2-106



Using Web Browsers in MATLAB®

Note The System Web browser preference is for UNIX platforms
(excluding Macintosh) and does not appear in the preferences pane for
other platforms.

2 Under System Web browser, in the Command field, specify the system
command to open the browser, for example, opera, which opens the Opera
Web browser.

3 Add options for opening your system browser in the Options field. For
example, geometry 1064x860 specifies the size of the window for Opera.

4 Click OK.

Specifying Fonts for the MATLAB Web Browser
To modify the MATLAB Web Browser font, select
File > Preferences > Fonts. The Web browser uses the font settings that
you specify for the HTML Proportional Text tool. For more information about
setting fonts, click the Help button in the preference pane for Fonts.

2-107



2 Desktop

Other Features for Managing the Desktop

In this section...

“Using Menus and Context Menus” on page 2-108

“Using Toolbar Features” on page 2-110

“Viewing Status in the Status Bar” on page 2-111

“Sizing, Arranging, and Sorting Columns in Desktop Tools” on page 2-111

“Selecting Multiple Items” on page 2-113

“Cut, Copy, Paste, and Move” on page 2-114

“Printing and Page Setup Options for Desktop Tools” on page 2-115

“Accessing MathWorks on the Web” on page 2-119

Using Menus and Context Menus

Understanding Merged Menus
When you use a tool in the desktop, its menu appears at the top of the
desktop. When you work in a different tool in the desktop, you still use
the menu at the top of the desktop. However, the menu content changes to
support that tool. When you undock a tool from the desktop, access its menu
at the top of the undocked tool.

Context Menus
Many of the features in MATLAB desktop tools are available from context
menus, also known as pop-up or right-click menus. To access a context menu,
right-click a selection or an area. The context menu for the selection or tool
appears, presenting the available actions. For example, the following is the
context menu for a selection in the Command History window.

2-108



Other Features for Managing the Desktop

If a context menu does not appear, try right-clicking in a different part of
the tool. When a context menu item is gray, the item does not apply to the
current selection or area.

2-109



2 Desktop

Using Toolbar Features
The toolbar in the desktop provides easy access to frequently used operations.
Some other tools also provide toolbars. The following illustration shows some
key features of the desktop toolbar.

���������"���
�
����������

&����)��	
���
������!����"���*
����
��
����
)��	
������������

���

�	����������%���!�

���%����#
�!�������"�
�%�����#
������"��������#�������	������
���
�

)�
�%����������	�
!�	����%	����������%���!����%�����������

The following are the major toolbar features:

• Tooltips — Position the pointer over a button for a couple seconds and a
tooltip appears describing the item.

• Customizing — You can customize the toolbar to show or remove controls,
and to rearrange the controls. Use File > Preferences > Toolbars. For
details, click Help in the resulting dialog box.

• Toolbars in Tools — Some tools have their own toolbars, located within the
tool window. For example, the Current Folder browser has its own toolbar.
When you undock one of these tools, the undocked tool includes the toolbar.

• Hiding Toolbars — To hide a toolbar, or to show it again after previously
hiding it, select Desktop > Toolbars, and select the toolbar of interest. As
an alternative, right-click a toolbar or menu bar and select a toolbar from
the context menu to hide or show it. In a figure window, use the View
menu to select the toolbar of interest.

• Repositioning Toolbars — If a tool has more than one toolbar, you can
change the position of the toolbars. For example, in the Editor, the default
is for the Editor toolbar to be above the Cell Mode toolbar. To move a
toolbar, grab the toolbar anchor (at the left end) and drag the toolbar to a
different location. The following images show the Editor toolbar before and
after moving the Cell Mode toolbar to the left of the Editor toolbar.

2-110



Other Features for Managing the Desktop

���
������%��

��

���������
��� ����������
���

Viewing and Changing the Current Folder in the Desktop
Toolbar
The current folder field in the desktop toolbar shows the current working
folder in MATLAB. Use this field to change the current folder. For example,
to use a previous current folder, click the down arrow in the field and select a
path from the history.

Viewing Status in the Status Bar
Along the bottom of the desktop is the status bar. It provides status
information, such as when MATLAB is busy executing statements or when
the Profiler is on.

You can construct your own functions to provide status information. One
method is the timer function. Use the Help browser search feature to find
other specific terms describing the status you want.

Sizing, Arranging, and Sorting Columns in Desktop
Tools
Some desktop tools present information in columns, such as the Current
Folder browser. The following table describes how you can resize and
reposition the columns, as well as sort the information in the columns.

2-111



2 Desktop

To... Do This...

Change the column
width

Drag the separator bar between two column headings.

View all the
information in a
column that is too
narrow to show it
all

Position the pointer over an item to view the full
value for that item. It displays like a tooltip.

Rearrange the
columns

Drag a column header to a different position.

Sort the
information by a
particular column

Click the column header. For example, in the Current
Folder browser, click the Date Modified date to sort
the items in date order.

In some columns, you also can reverse the sort order
by clicking the column header again. A small gray
arrow in the header indicates the current sort order.
For example, a down arrow in the Date Modified
column header indicates a descending sort order. The
newest files are at the top of the list.

2-112



Other Features for Managing the Desktop

 �������������
�
������"�������
�������!�

��
	��������+
,��
�%���������
,������������������

Selecting Multiple Items
In many desktop tools, you can select multiple items, and then select an
action to perform on all the selected items. Select multiple items using the
standard practices for your platform.

For example, if you run on a Microsoft Windows platform, do the following to
select multiple items:

1 Click the first item you want to select.

2 Hold the Ctrl key, and then click the next item you want to select.
Repeat this step until you have selected all the items you want. To select
contiguous items, select the first item, hold the Shift key, and then select
the last item.

Now you can perform an action on the selected items, such as delete.

2-113



2 Desktop

To clear one of multiple selected items, Ctrl+click that item. To clear all
selected items, click outside of the selection.

See also, “Performing Desktop Actions Using the Keyboard” on page 2-66

Cut, Copy, Paste, and Move
You can cut and copy a selection from a desktop tool to the clipboard, and
then paste it from the clipboard into another tool or application. You can use
the Edit menu, toolbar, context menus, or standard keyboard shortcuts. For
example, you can copy a selection of statements from the Command History
window and paste them into appropriate MATLAB desktop tools, such as
the Editor.

Use Paste to move items copied to the clipboard from other applications.
The Paste to Workspace item in the Edit menu opens the selection on the
clipboard in the Import Wizard. You can use this wizard to copy data from
another application, such as the Microsoft Excel application, into MATLAB.
For details, see “Tips for Using the Import Wizard” in the MATLAB Data
Import and Export documentation.

When editing in the Command Window and the Editor, you can move text to a
new location by selecting the text and dragging it. To copy text, press Ctrl
and drag the selected text to the new location.

To undo the most recent cut, copy, or paste command, select Undo from the
Edit menu. Use Redo to reverse the Undo. For some tools, you can undo
multiple times in succession.

See also the clipboard function.

Drag and Drop
You also can move or copy a selection from one tool to another by dragging the
selection. For example, make a selection in the Command History window
and drag it to the Command Window, which pastes it there. Edit the lines in
the Command Window, if needed, and then press the Enter key to run the
lines from the Command Window.

2-114



Other Features for Managing the Desktop

Another example is to open a file in the Editor by dragging the file name
from the Current Folder browser to the Editor. If you drag editable text (for
example, text in the Editor), it cuts the text rather than copies it. Use Ctrl
and drag to copy rather than cut editable text.

On Windows platforms, you can drag items from external applications into
MATLAB. For example, dragging text from a document created using the
Microsoft Word application into the Editor cuts and pastes it into the open
file. Dragging a MATLAB code file from Windows Explorer tool to the
Command Window runs the file. Similarly, you can drag selections from
desktop tools to other applications. For example, you can drag text from the
Editor to the Word application.

Printing and Page Setup Options for Desktop Tools
You can print from all desktop tools, except the Current Folder browser, but
there are some differences in usage.

To print, select File > Print from the tool. A Print dialog box opens. The
Properties button in the Print dialog box is enabled for the Web browser,
the Help browser, and the Profiler. However, it is disabled for the other
desktop tools.

2-115



2 Desktop

To specify standard page setup options for your platform when you print
from the Command History, Workspace browser, and Variable Editor, select
File > Page Setup. A standard page setup dialog box for your platform
opens.

MATLAB provides special page setup options for printing from the Command
Window and Editor. The setup options are essentially the same for both tools,
with minor variations. This section covers their use:

• “Specifying Page Setup Options” on page 2-117

• “Layout Options for Page Setup” on page 2-117

• “Header Options for Page Setup” on page 2-118

• “Fonts Options for Page Setup” on page 2-118

2-116



Other Features for Managing the Desktop

Specifying Page Setup Options
To specify page setup options, perform these steps:

1 In the tool you want to print from, for example, the Command Window,
select File > Page Setup.

The Page Setup dialog box opens for that tool.

2 Click the Layout, Header, or Fonts tab in the dialog box and set those
options for that tool, as detailed in subsequent sections.

3 Click OK.

4 After specifying the options, select File > Print in the tool you want to
print from, for example, the Command Window.

The contents from the tool print, using the options you specified in Page
Setup.

Layout Options for Page Setup
You can specify the following layout options. A preview area shows you the
effects of your selections.

• Print header— Print the header specified in the Header pane.

• Print line numbers — Print line numbers.

• Wrap lines—Wrap any lines that are longer than the printed page width.

• Syntax highlighting— For keywords and comments that are highlighted
in the Command Window, specify how they are to appear in print. Options
are black and white text (that is, no highlighting), colored text (for use with
a color printer), or styled text. For styled text, keywords appear in bold,
comments appear in italics, and all other text appears in the normal style.
Only keywords and comments you input in the Command Window are
highlighted; output is not highlighted.

2-117



2 Desktop

Header Options for Page Setup
If you want to print a header, select the Layout tab and then select Print
header. Next, select the Header tab and specify how the elements of the
header are to appear. A preview area shows you the effects of your selections:

• Page number— Format for the page number, for example # of n

• Border— Border style for the header, for example, Shaded box

• Layout— Layout style for the header. For example, Standard one line
includes the date, time, and page number all on one line

Fonts Options for Page Setup
Specify the font to use for the printed contents:

1 From Choose font, select the element, either Body or Header, where Body
text is everything except the Header.

2 Select the font to use for the element.

For example, if you access this dialog box while using the Command
Window, you can select Use Command Window font for Body text. The
printed text matches the Command Window font.

3 Repeat for the other element.

If you did not select Print header on the Layout pane, you do not need
to specify the Header font.

As an example, for Header text, select Use custom font and then specify the
font characteristics—type, style, and size. After you specify a custom font, the
Sample area shows how the font will look.

Tip To change the font that a desktop tool uses, select
File > Preferences > Fonts > Custom.

2-118



Other Features for Managing the Desktop

Accessing MathWorks on the Web
You can access popular pages on the MathWorks Web site from the MATLAB
desktop.

To download trial versions of products that you do not have, selectHelp > Get
Product Trials.

For access to other popular Web site pages, select one of the following items
from the Help > Web Resources menu. The selected Web page opens in
your system Web browser:

• MathWorks Web Site — Home page of the MathWorks Web site
(http://www.mathworks.com).

• Products & Services — MathWorks Products and Services page
(http://www.mathworks.com/products/) with information about the full
family of products.

• Support — MathWorks Support page
(http://www.mathworks.com/support) where you can look for solutions to
problems, or report new problems.

• Training — List of courses for learning to use MathWorks products
(http://www.mathworks.com/services/training/courses/).

• MathWorks Account — Login page for MathWorks Account
(http://www.mathworks.com/accesslogin/). If you are registered,
your main account page displays. Otherwise, you are directed to a page
where you register online. Registration allows you to view your product
registration and license information and helps you stay up to date on the
latest developments for MATLAB.

• MATLAB Central — The user community for MATLAB
(http://www.mathworks.com/matlabcentral/) for . It includes contests
for MATLAB users and a screen saver with the logo for MATLAB.

• MATLAB File Exchange — Code library of files contributed by
MathWorks customers and employees, available for free download and use
with MathWorks products. You can also access the repository using the
File Exchange desktop tool. For more information, see Chapter 8, “File
Exchange — Finding and Getting Files Created by Other Users”.

2-119

http://www.mathworks.com
http://www.mathworks.com/products/
http://www.mathworks.com/support
http://www.mathworks.com/services/training/courses/
http://www.mathworks.com/accesslogin/
http://www.mathworks.com/matlabcentral/


2 Desktop

• MATLAB Newsgroup Access— Provides access to the Usenet newsgroup
for MATLAB and related products, comp.soft-sys.matlab, where you can
post and answer questions, as well as view the archives.

• MATLAB Newsletters — Access to online versions of News and Notes
and MATLAB Digest. News and Notes is published twice a year and
contains feature articles, technical notes, and product information for users
of MATLAB. MATLAB Digest, an electronic bulletin consisting of technical
notes, solutions, and timely announcements to the user community, is issued
more frequently. See http://www.mathworks.com/company/newsletters.

2-120

http://www.mathworks.com/company/newsletters


Managing Your Licenses

Managing Your Licenses
You can use the MATLAB licensing features to perform license management
activities, such as activating licenses, deactivating licenses, or updating
licenses. You also can visit the License Center at the MathWorks Web site to
perform other license-related activities.

To access the licensing feature:

1 Select Help > Licensing.

2 Select the activity you want to perform from the Licensing menu. The
following table describes the options. Depending on your license type, the
Licensing menu on your system might not include all options.

Note Some options require an Internet connection. If your Internet
connection requires a proxy server, use MATLAB Web preferences to specify
the server host and port. See “Specifying Proxy Server Settings” on page
2-104 for more information.

Option Description

Activate
Software

Starts the activation application, which walks you through
the activation process. Answer the questions on each
dialog box, select the license you want to activate, and
click Activate.

Deactivate
Software

Displays a list of all your MathWorks licenses on this
computer, with their current status. When you select a
license and click Deactivate Selected License, MATLAB
deactivates all releases on this computer associated with
the license, and updates the licensing information at
the MathWorks Web site. You will not be able to use
MathWorks software with that license on this computer.

If you are not connected to the Internet, MATLAB
deactivates the licences on your computer but cannot
update the corresponding license information stored at the
MathWorks Web site. In this scenario, MATLAB returns a
deactivation string. To complete deactivation, save a copy

2-121

http://www.mathworks.com/licensecenter


2 Desktop

Option Description

of this string, go to a computer with an Internet connection,
and visit the License Center at the MathWorks Web site.
There you can login to your MathWorks Account and enter
the deactivation string.

Update
Current
Licenses

Displays a list of all your MathWorks licenses on this
computer, with their current status. When you select a
license and click Update Selected License, MATLAB
contacts MathWorks to retrieve the most current version
of the License File for the license. The update process
overwrites the current License File on your system. You
will need to restart MATLAB.

Manage
Licenses

Starts a Web browser, opening the My Licenses page
associated with your MathWorks Account. You can use
this page, called the License Center, to perform many
licensing activities.

2-122



Check for Updates

Check for Updates
To determine if more recent versions of your MathWorks products are
available, and to view latest version numbers for all MathWorks products,
use the Check for Updates feature.

To access the Check for Updates feature, you must have an active Internet
connection. Then, follow these steps:

1 Select Help > Check for Updates. The Check for Updates dialog box
displays.

2 From the Select View list, choose to view the latest version numbers
for all MathWorks products installed on your system, or all MathWorks
products. The latest versions are displayed.

3 Click any column heading to sort or reverse the sort order by that column.

4 Use the What’s New column to access the release notes for a product.
Release notes document new features and changes, bug reports, and
compatibility considerations.

5 To upgrade to the most recent version, click Download Products at
MathWorks.com, which links to the Downloads area of the MathWorks
Web site. If you do not want to upgrade at this time, click Close.

2-123



2 Desktop

Specifying Options for MATLAB Using Preferences

In this section...

“Setting Preferences for MATLAB” on page 2-124

“Summary of Preferences” on page 2-125

“Where MATLAB Stores Preferences” on page 2-126

“Preferences Folder and Files MATLAB Uses When Multiple MATLAB
Releases Are Installed” on page 2-127

Setting Preferences for MATLAB
Use preferences to specify options for MATLAB tools, as follows:

1 Select File > Preferences. Alternatively, click the Preferences button
on the desktop toolbar; if the button is not on the toolbar, you can add
it—for information, see “Setting Toolbars Preferences for Desktop Tools” on
page 2-156.

2 From the left pane of the Preferences dialog box, choose a tool or product
and click the plus sign (+) to display more preferences for that item. From
the expanded list, select the entry you want. The right pane shows the
preferences for that item.

3 Change settings. Click Apply or OK to set the preferences. Preferences
take effect immediately. They remain persistent across sessions of
MATLAB.

Function Alternative
Open the Preferences dialog box using the preferences function.

2-124



Specifying Options for MATLAB® Using Preferences

Summary of Preferences

Preference What You Can Specify

General Preferences Toolbox path caching, figure window printing,
delete function behavior, MAT-file save formats,
confirmation dialogs, and source control.

Keyboard Tab completion, function hints, and delimiter
matching for the Command Window and Editor.
Keyboard shortcuts for desktop tools.

Fonts Font type, style, and size for desktop tools. Customize
for any tool.

Colors Colors for text, background, syntax highlighting,
hyperlinks in desktop tools.

Colors for code analyzer, variable and function
highlighting, and cell display in the Editor

Code Analyzer Show or hide M-Lint messages in the Editor and in
the Code Analyzer Report.

Toolbars Remove, add, and rearrange controls on toolbars for
desktop tools.

Command Window Numeric format and display, accessibility, and tab
size.

Command History Display, filtering, and saving.

Editor/Debugger Editor type, startup options, display, tab size and
indenting, language (including syntax highlighting
colors for all files other than MATLAB files), code
folding, and autosave.

Help Product filter, help on selection window, and PDF
reader for Linux platforms.

Web Internet proxy server settings.

Current Folder Number of entries in history and refresh options.

Variable Editor Numeric format, use of Enter key, and decimal
separator.

2-125



2 Desktop

Preference What You Can Specify

Workspace Statistical calculation options.

GUIDE Display options for GUI-building tool.

Time Series Tools Property Editor dialog and x-axes warning dialog.
For details, click the Help button in the Preferences
dialog box.

Figure Copy Template Application, text, line, uicontrols, axis, format,
background color, and size.

Other products Preferences for other installed MathWorks products.

Where MATLAB Stores Preferences
MATLAB and other MathWorks products store their preferences in the file
matlab.prf. This file loads when you start MATLAB. The folder containing
this file is called the preferences folder. The preference folder also contains
other related files.

The Path to and File Name for the Preferences Folder
To see the full path for the folder where matlab.prf and related files are
located, type prefdir in the MATLAB Command Window.

On Apple Macintosh platforms, the folder can be in a hidden folder, for
example, myname/.matlab/R2009b. If so, to access the hidden folder:

1 In the AppleMac OS® Finder tool, select Go > Go to Folder.

2 In the resulting dialog box, type the path returned by prefdir, and then
press Enter.

The name of the preferences folder, matches the name of the release. For
instance, for MATLAB R2010b, the name of the preferences folder is R2010b.

Effects of Changing Preferences
When you change preferences using the MATLAB Desktop
(File > Preferences), it updates matlab.prf. When you close MATLAB, it
saves those changes to matlab.prf.

2-126



Specifying Options for MATLAB® Using Preferences

Effects of Installation and Deinstallation on the Preferences
Folder
Installing MATLAB has no effect on the preferences folder. That is, MATLAB
creates, checks, copies, and writes to the preferences folder when you start
up MATLAB, not when you install it. When you deinstall MATLAB, there
is an option in the uninstaller to remove the preferences folder. However,
this option is not selected by default.

Preferences Folder and Files MATLAB Uses When
Multiple MATLAB Releases Are Installed
The files in the preferences folder that MATLAB uses depends on the version
of MATLAB you are starting up. How and if MATLAB migrates (reuses)
preferences files from one version to the next also depends on the version.

Process MATLAB Uses to Create and Migrate the Preferences
Folder and its Files
When you start it up, MATLAB looks for a preferences folder name that
matches the release starting up, and then does one of the following:

• If MATLAB finds a preferences folder name matching the release starting
up, it uses that folder and the files within it.

If that folder is empty, MATLAB recreates the default files for the release
starting up.

• If MATLAB does not find a preferences folder name matching the release
starting up, it creates one. Then, MATLAB checks to see if the release
of MATLAB that immediately precedes the one you are starting up is
installed.

- If that previous release is not installed, MATLAB recreates the folder
and default files for the version starting up.

For example, if you start up R2010b and R2010a is not installed, then
MATLAB recreates the default files for the R2010b preferences folder.
This is true even if R2009b or earlier is installed.

- If that previous release is installed, MATLAB migrates the files from
the preferences folder corresponding to that previous release to the
preferences folder for the release starting up.

2-127



2 Desktop

For example, if you start up R2010b and R2010a is installed, then
MATLAB migrates the files from R2010a preferences folder to the
R2010b preferences folder.

Controlling the Preferences Files MATLAB Uses
This table describes how to control which versions of preferences files
MATLAB uses.

To Use: Do This:

Default preference files for a given
release of MATLAB

Make sure the preferences folder
for that release exists, but is empty
before starting up that MATLAB
version.

All the preference files from the
release of MATLAB immediately
preceding the release you plan to
start up.

Ensure that the preferences folder
exists for that preceding release.
If so, delete the entire preferences
folder for the release of MATLAB
you plan to start up.

The release-specific default for just
a particular file in the preferences
folder

Delete just that file from the
preferences folder for the release of
MATLAB you plan to start up.

One file to consider keeping is
history.m. For more information
about that file, see “Viewing
Statements in the Command History
Window” on page 3-68.

2-128



Setting General Preferences for the MATLAB® Application

Setting General Preferences for the MATLAB Application

In this section...

“General Preferences” on page 2-129

“MAT-Files Preferences” on page 2-131

“Confirmation Dialogs Preferences” on page 2-132

“Source Control Preferences” on page 2-136

“Java Heap Memory Preferences” on page 2-136

General Preferences
Select File > Preferences > General from any desktop tool to access
General Preferences.

These preferences apply to all relevant tools in the MATLAB application.

2-129



2 Desktop

Toolbox Path Caching
See “Toolbox Path Caching in the MATLAB Program” on page 1-19.

2-130



Setting General Preferences for the MATLAB® Application

Figure Window Printing
See “Printing and Exporting” in MATLAB Graphics documentation.

Deleting Files
See:

• “Deleting Files and Folders Using the Current Folder Browser” on page
7-42

• “Deleting Files and Folders Using Functions” on page 7-44

MAT-Files Preferences
The MAT-file save format sets the default version for creating MAT-files
and FIG-files. The setting applies to the save function and Save menu items
such as File > Save Workspace As.

Options are:

2-131



2 Desktop

• MATLAB Version 7.3 or later (save -v7.3) — On 64-bit systems, this
option allows you to save data items larger than 2 GB. As with Version 7,
files are compressed and use Unicode® character encoding.

• MATLAB Version 7 or later (save -v7)— MATLAB compresses data in
Version 7 MAT-files to reduce the required storage space, and automatically
decompresses the data during load operations. Unicode character encoding
allows other MATLAB users to access the data, regardless of the default
character encoding scheme used by their systems. This is the default
on new installations of MATLAB software, or upgrades from MATLAB
versions earlier than 7.3.

• MATLAB Version 5 or later (save -v6) — Specify this option to save
MAT-files for use with versions prior to MATLAB Version 7, or to create
uncompressed files.

For more information, see “MAT-File Versions” in the MATLAB Data Import
and Export documentation.

Confirmation Dialogs Preferences
These preferences instruct MATLAB to display or not display specific
confirmation dialog boxes.

2-132



Setting General Preferences for the MATLAB® Application

When the check box for a confirmation dialog is selected and you perform the
action it refers to, the confirmation dialog box appears. If you clear that check
box, the dialog box does not appear when you perform the action.

When the confirmation dialog box does appear, it includes a Do not show
this prompt again check box. If you select the check box in the dialog box, it
automatically clears the check box for the confirmation preference.

For example, select the check box Warn before deleting Command
History items. Then select Edit > Clear Command History. MATLAB
displays the following confirmation dialog box.

2-133



2 Desktop

If a confirmation dialog box includes a Do not show this prompt again
check box and you click OK, the confirmation dialog box will not appear
the next time you perform the action. In addition, the check box in the
Confirmations Dialogs preferences pane is cleared.

The following table summarizes the confirmation dialog boxes for MATLAB.
There might be additional confirmation dialog boxes listed for other products
you have installed.

Confirmation Dialogs
Check Box Item

Description of the
Confirmation Dialog Box For More Information

Warn before deleting
Command History items

Appears when you delete entries
from the Command History
window.

“Deleting Entries from the
Command History Window” on
page 3-76

Warn before clearing the
Command Window

Appears when you clear the
Command Window content using
menu items. Does not appear
when you use the clc function.

“Clearing the Command
Window” on page 3-50

Confirmwhen overwriting
variables in MAT-files

Appears when you save variables
by dragging them from the
Workspace browser onto a
MAT-file in the Current Folder
browser.

“Creating and Updating
MAT-Files with the Current
Folder Browser” on page 7-37

Prompt when editing files
that do not exist

Appears when you type edit
filename, if filename does not
exist in the current folder or on
the search path.

“Function Alternative for
Creating New Files” on page 9-8

2-134



Setting General Preferences for the MATLAB® Application

Confirmation Dialogs
Check Box Item

Description of the
Confirmation Dialog Box For More Information

Prompt to exit debug
mode when saving file

Appears when you try to save
a modified file while in debug
mode.

“Ending Debugging” on page
9-158

Prompt to save on activate Appears when you have unsaved
changes to a figure and program
file, and then activate the GUI,
by clicking the Run button, for
example.

“GUIDE Preferences” in the
MATLAB Creating Graphical
User Interfaces documentation

Prompt to save on export Appears when you have
unsaved changes to a figure
and program file, and then select
File > Export.

“GUIDE Preferences” in the
MATLAB Creating Graphical
User Interfaces documentation

Confirm changing default
callback implementation

Appears after you have modified
a callback signature in GUIDE.

“Changing Callbacks Assigned
by GUIDE” in the MATLAB
Creating Graphical User
Interfaces documentation

Confirm before exiting
MATLAB

Appears when you quit
MATLAB.

Quitting MATLAB

Warn about missing
search databases

Appears if you have help files in
the Help browser for products
not produced by MathWorks and
the search database for those
files has not been updated for
the version of MATLAB you are
running.

Contact the provider of the help
files to obtain the correct version
of the search database. Without
the most current version, you
can use the help files in the Help
browser, but the Help browser
search will not include those files
in search results.

Confirm when deleting
variables

Appears when you delete
variables from the workspace
using menu items. Does not
appear with the clear function.

“Deleting Workspace Variables”
on page 6-9

2-135



2 Desktop

Source Control Preferences
For information, see Chapter 13, “Source Control Interface”.

Java Heap Memory Preferences
The Java Heap Size allows you to adjust the amount of memory that
MATLAB software allocates for Java objects.

Note The default heap size is sufficient for most cases.

To adjust the Java heap size:

1 Select File > Preferences > General > Java Heap Memory.

2 Select a heap size value using the slider or spin box.

Note Increasing the Java heap size decreases the amount of memory
available for storing data in arrays.

2-136



Setting General Preferences for the MATLAB® Application

3 Select OK to store the value in the MATLAB preferences file and close
the window. If you select Apply, MATLAB stores the value, but does not
close the window.

4 Restart MATLAB.

If the requested amount of memory is not available upon restart, MATLAB
resets the value in the preferences file to the default, and displays an error
dialog box. To readjust the value, repeat the previous steps.

If increasing the heap size does not eliminate memory errors, check your
Java code for memory leaks. Eliminate references to objects that are no
longer useful. For more information, see the Java SE Troubleshooting guide
at http://java.sun.com/javase/6/webnotes/trouble/.

2-137

http://java.sun.com/javase/6/webnotes/trouble/ 


2 Desktop

Customizing the Desktop Using Preferences

In this section...

“Setting Keyboard Preferences for Desktop Tools” on page 2-138

“Setting Fonts Preferences for Desktop Tools” on page 2-141

“Setting Colors Preferences” on page 2-150

“Setting Color Preferences for Programming Tools” on page 2-154

“Setting Toolbars Preferences for Desktop Tools” on page 2-156

Setting Keyboard Preferences for Desktop Tools
Select File > Preferences > Keyboard to set the following preferences for
the Command Window and Editor/Debugger:

• Tab completion

• Function hints

• Delimiter matching

See also “Customizing Keyboard Shortcuts” on page 2-79.

Setting Tab Completion Preferences

Enable in Command Window. Select the check box to use tab completion
when typing functions in the Command Window—for more information about
the feature, see “Completing Statements in the Command Window — Tab
Completion” on page 3-24. Clear the check box if you do not want to use the
tab completion feature. With the tab completion preference cleared, when you
press the Tab key, MATLAB moves the cursor to the next tab stop rather than
completing a function. See also the preference for “Tab size” on page 3-64.

2-138



Customizing the Desktop Using Preferences

Enable in Editor/Debugger. Select the check box to use tab completion
when typing functions in the Editor—for more information about the
feature, see “Completing Statements in the Command Window — Tab
Completion” on page 3-24. Clear the check box if you do not want to use
the tab completion feature. With the tab completion preference cleared,
when you press the Tab key, MATLAB moves the cursor to the next tab
stop rather than completing a function. For related information, select
File > Preferences > Editor/Debugger > Tab, and click Help.

Tab key narrows completions. Select this check box to narrow the list of
possible completions shown by typing another character and pressing Tab.
For details, see “Narrowing Completions Shown” on page 3-27.

View Command Window tab key preferences. Click the link to set
preferences for the Tab key size in the Command Window, which MATLAB
uses when the tab completion preference is not enabled.

View Editor/Debugger tab key preferences. Click the link to
set preferences for the Tab key size and indenting preferences in the
Editor/Debugger.

Setting Function Hints Preferences
To show function hints in the Command Window and Editor, select the
function hints check boxes. If you do not want to use function hints, clear the
check boxes. Function hints are a reminder of the syntax for a function that
you use while entering a statement. The hints appear in a temporary pop-up
window when you enter the opening parenthesis after a function name. For
more information, see “Viewing Function Syntax Hints While Entering a
Statement” on page 3-33.

Setting Delimiter Matching Preferences
To set these preferences, select File > Preferences > Keyboard. These
preferences apply to the Command Window and the Editor.

With these preferences selected, MATLAB alerts you to matched and
unmatched delimiters based on the MATLAB language syntax rules. For
example, when you type a parenthesis or another delimiter, MATLAB
highlights the matched parenthesis or delimiter in the pair.

2-139



2 Desktop

Delimiter pairs are parentheses ( ), brackets [ ], and braces { }. For the Editor,
paired language keywords are also matched. Paired language keywords
include for, if, while, else, and end statements.

In the following illustration, MATLAB underlines the left parenthesis in the
pair when you move over the right parenthesis using an arrow key.

If the matching delimiter is not visible on the screen, a pop-up window
appears and shows the line containing the matching delimiter. In the Editor,
the line number is included. Click in the pop-up window to go to that line.

Match while typing. Select the check box if you want to be alerted to
matches and mismatches in pairs of delimiters as you type them. Then choose
how you want MATLAB to alert you to matches by selecting an entry from
Show match with. When you type a closing (or opening) delimiter in the
Command Window or Editor, MATLAB alerts you based on the option you
choose:

• Balance— The corresponding delimiter is highlighted briefly.

• Underline— Both delimiters in the pair are underlined briefly.

• Highlight— Both delimiters in the pair are highlighted briefly.

Choose how you want MATLAB to alert you to mismatches using Show
mismatch with. When you type a closing delimiter that does not have an
opening match, MATLAB alerts you based on the option you choose:

2-140



Customizing the Desktop Using Preferences

• Beep — MATLAB beeps.

• Strikethrough— The delimiter you typed is crossed out briefly.

• None — There is no action.

Match on arrow key. Select the check box if you want to be alerted to
matches and mismatches in pairs of delimiters when you use an arrow key
to move the cursor over a delimiter. Then choose how you want MATLAB to
alert you to matches by selecting an entry from Show match with. When
you move the arrow over a closing (or opening) delimiter in the Command
Window or Editor, MATLAB alerts you based on the option you choose:

• Underline— Both delimiters in the pair are underlined briefly.

• Highlight— Both delimiters in the pair are highlighted briefly.

Choose how you want MATLAB to alert you to mismatches by selecting an
entry from Show mismatch with. When you move an arrow key over a
delimiter that does not have a match, MATLAB alerts you based on the option
you choose:

• Beep — MATLAB beeps.

• Strikethrough— The delimiter is briefly crossed out.

• None — There is no alert.

Setting Fonts Preferences for Desktop Tools
You can specify your preferences for fonts that the desktop tools use. The
first time MATLAB uses or displays the list of available fonts, it gets the
operating system’s font list. If a font exists, but MATLAB cannot display it,
then MATLAB excludes it from its list. The system fonts are installed in
one of the following locations:

• The operating system’s standard location

Ask your system administrator where this is on your system.

• The /jre/lib/fonts folder where Java software is installed on your
system.

2-141



2 Desktop

See the following sections for details on setting fonts preferences:

• “Desktop Fonts Preferences” on page 2-142

• “Custom Fonts Preferences” on page 2-146

• “Changing the Font — Example” on page 2-147

• “Antialiasing for Desktop Fonts on Linux and UNIX Platforms” on page
2-149

• “Making Fonts Available to MATLAB Tools on Windows Platforms” on
page 2-150

Desktop Fonts Preferences
Use desktop font preferences to specify the font characteristics for MATLAB
desktop tools. The font characteristics are

• Name (also called family or type), for example, select SansSerif

• Style, for example, select bold

• Size in points, for example, type 11 points

Select File > Preferences > Fonts to set fonts for desktop tools. You can
specify:

• A font for all the tools that primarily display code, such as the Command
Window

• A font for all the tools that display text, such as the Current Folder

• Custom fonts, including a font for all the tools that use HTML Proportional
text, such as the Help display pane and the MATLAB Web browser

If you want, you can separately specify the font for each desktop tool.

Select the font characteristics from the lists shown. For font size, you can type
or select a size. You can type a size not shown as a choice in the drop-down
menu.

You can set some font options differently for printing — see “Printing and
Page Setup Options for Desktop Tools” on page 2-115.

2-142



Customizing the Desktop Using Preferences

For information about making additional fonts available to MATLAB, see
“Making Fonts Available to MATLAB Tools on Windows Platforms” on page
2-150.

2-143



2 Desktop

Desktop Code Font and Desktop Text Font. You specify separate
font characteristics for tools that primarily display code (Desktop code
font), such as the Command Window, and tools that primarily display text
(Desktop text font), such as the Current Folder browser. (For other tools,
such as the Help display pane and the MATLAB Web Browser you use custom
fonts—see “Custom Fonts Preferences” on page 2-146.)

Suppose you prefer that code display in a monospace font to provide better
alignment, and to distinguish it from other text information. The desktop
code font preference enables you set one preference to apply a monospace style
to all tools that display code (except the Help and Web Browsers).

Typically, you specify a proportional font for tools that display little or no
code. You use the desktop text font preference to set just one preference that
applies to all tools that display little or no code. If you want to use the system
font as the desktop text font, select Use system font.

The following illustrations show how the Editor looks using a monospace font
compared to a proportional font. A monospace font is useful when you care
about alignment, while a proportional font uses less space.

$������������%�������#��

�%���%�����������������"����� ���#�����������
-.������������%���/�������-.��%���%���������%�
�����
�����"������������0�
����,������1��
����#�"�%�����������%�
	���-.�

2-144



Customizing the Desktop Using Preferences

$����������������
�����#�%���%�������������������"������ ���#������������-.����
)��)��������%�
����%��������-.�%���%����#��	�����
����������%�
���������������
������2������,������1��
����#����%�
	���-.#����������
������

When you change a font characteristic for Desktop code font, the
characteristic takes effect for all tools that use the desktop code font. The
same is true when you change a font characteristic for Desktop text font.

After changing a font characteristic, a sample in the dialog box shows how it
will look. Click Apply or OK to apply the change to the desktop tools.

Factory Default Font Settings

The following table lists the factory default code and text font settings, and
the tools that use those font settings. If you previously changed settings,
and now want to revert to the default values, update the settings using the
values in the table.

2-145



2 Desktop

Font Type
Factory Default
Characteristics and Sample

Tools Using Font Type by
Factory Default

Desktop code font Monospaced, Plain, 10 point • Command History

• Command Window

• Editor (which also applies to the
Shortcuts Editor)

Desktop text font Your system’s current font. • Current Folder browser (which
also applies to the Path browser)

• Function Browser in the
Command Window and Editor

• Help Navigator

• Workspace browser

• Variable Editor

See Also

“Specifying Options for MATLAB Using Preferences” on page 2-124

Custom Fonts Preferences
Use custom font preferences to specify the font for HTML Proportional Text,
and to override font settings for individual desktop tools. Desktop tools
otherwise use the settings that the Fonts pane specifies. The Fonts pane is
described in “Desktop Fonts Preferences” on page 2-142.

HTML Proportional Text is the default font for the following tools and
portions of tools:

• The MATLAB Help display pane

• The small window that opens for the help on selection feature.

• The MATLAB Web browser— which displays the HTML output generated
from publishing

• The Profiler

2-146



Customizing the Desktop Using Preferences

• The Function Browser function help

• Extended Code Analyzer messages

To specify custom fonts preferences:

1 Select File > Preferences > Fonts > Custom.

The Fonts Custom Preferences pane appears.

2 Select the tool for which you want to specify custom fonts from the Desktop
tools list. The type of font the tool currently uses appears under Font
to Use.

3 For Font to Use, select one of the following:

• Desktop code, which you can customize using the Fonts pane.

• Desktop text, which you can customize using the Fonts pane.

• Custom, and then specify the font characteristics.

4 Click OK.

Note If you change the font style (for example, to bold or italic) for HTML
Proportional Text, it has no effect. If you change the font size, it affects
both noncode and code text for tools using the HTML Proportional Text font.

Changing the Font — Example
This example:

• Changes the settings for the desktop code font from the factory default
settings. (See Factory Default Font Settings on page 145.)

• Changes the Command History font preference so that it uses the desktop
text font instead of the code font.

• Specifies a custom font for the Current Folder browser.

1 Select File > Preferences > Fonts.

2-147



2 Desktop

2 Under Desktop code font, select Times New Roman, Plain, 14 point.

3 Under Desktop text font, select Use system font.

4 Click Apply.

5 Make the Command History window use the desktop text font:

a Click the Custom Fonts link.

b From Desktop tools, select Command History.

c Select the Desktop text radio button.

d Click Apply.

6 Apply a custom font to the Current Folder browser:

a From Desktop tools, select Current Folder.

b Select the Custom radio button.

c Select Arial Narrow and Plain, and then type 11 in the size field.

d Click OK.

The following table details the results of the changes.

Tool Font Type Font Characteristics

Command Window Desktop code Times New Roman® font, Plain,
14 point

Command History Desktop text Same as your current system
font, which appears in the
dimmed fields below the Use
system font check box.

Editor Desktop code Times New Roman font, Plain,
14 point

Help Navigator Custom SanSerif, Plain, 8 point

HTML Proportional
Text

Custom SansSerif, Plain, 10 point

2-148



Customizing the Desktop Using Preferences

Tool Font Type Font Characteristics

Current Folder
browser

Custom Monotype Corporation Arial®

Narrow font, Plain, 11 point

Workspace browser Desktop text Same as your current system
font, which appears in the
dimmed fields below the Use
system font check box.

Variable Editor Desktop text Same as your current system
font, which appears in the
dimmed fields below the Use
system font check box.

Function Browser Desktop text Same as your current system
font, which appears in the
dimmed fields below the Use
system font check box.

Notice that on the Fonts preferences pane, the descriptive text reflects your
changes. For example, under Desktop text font, the text reads, Currently
used by: Command History, Workspace, Variable Editor, Function
Browser.

See Also. For information about how MATLAB stores preferences, and to
get help for other preferences, see “Specifying Options for MATLAB Using
Preferences” on page 2-124.

Antialiasing for Desktop Fonts on Linux and UNIX Platforms
To give the desktop a smoother appearance on Linux3 and UNIX4 platforms,
select the antialiasing preference on the Preference > Fonts pane. The
preference applies to all fonts.

3. Linux is a registered trademark of Linus Torvalds.

4. UNIX is a registered trademark of The Open Group in the United States and other
countries.

2-149



2 Desktop

Note The antialiasing option is not necessary on Microsoft Windows or Apple
Macintosh platforms, because MATLAB follows the operating system’s font
settings on these platforms.

Making Fonts Available to MATLAB Tools on Windows
Platforms
Under the following circumstances, consider updating fonts on your Windows
platform as described:

• If a new compatible font is available to MATLAB

A compatible font on Windows platforms for desktop components (such as
the Command Window), figure windows, and uicontrols is one compatible
with TrueType® and Microsoft OpenType® fonts. A compatible font for
graphics objects, such as xlabel, ylabel, title, and text is a bitmapped
font.

Use the Windows Control Panel to install the font. Then, restart MATLAB
so that it can use the font.

• If you open a file created by someone else, and you see boxes or meaningless
symbols instead of text.

When you see boxes or meaningless symbols instead of text, it is probably
because you are using different language fonts from the file creator. This
situation can occur, for example, if you open a file created by someone
whose native language is Japanese and your native language is English.
The Japanese user is probably using fonts for East Asian languages and
you are not.

In the Windows Control Panel, find the region and language options, and
then install the supplemental files for East Asian languages.

For more information, refer to the Windows help.

Setting Colors Preferences

• “Setting Colors Used in Desktop Tools” on page 2-151

2-150



Customizing the Desktop Using Preferences

• “Desktop Tool Colors” on page 2-151

• “MATLAB Syntax Highlighting Colors” on page 2-152

• “Other Colors” on page 2-154

• “See Also” on page 2-154

Setting Colors Used in Desktop Tools
Desktop color preferences specify the colors used in MATLAB
desktop tools and the colors that convey syntax highlighting. Select
File > Preferences > Colors to set color preferences for desktop tools. For
instance:

• To set colors for text and the background:

1 Clear Use system colors.

2 Select the colors you want to use from the Text and Background color
palettes.

• To set the color of hyperlinks in the Command Window, select a color from
the Hyperlinks color palette.

You can set some color options differently for printing — see “Printing and
Page Setup Options for Desktop Tools” on page 2-115.

Desktop Tool Colors
Use Desktop tool colors to change the color of the text and background in
the desktop tools. The colors also apply to the Import Wizard. The colors do
not apply to the HTML display pane nor to the Web Browser.

Select the check box Use system colors if you want the desktop to use the
same text and background colors that your platform (for example, Microsoft
Windows) uses for other applications.

To specify different text and background colors, follow these steps:

1 Clear the Use system colors check box.

2 Click the arrow next to the Text color and choose a new color from the
palette shown.

2-151



2 Desktop

When you choose a color, the Sample area in the dialog box updates to
show you how it will look.

3 Click the arrow next to the Background color and choose a new color.

If you use a gray background color, a selection in an inactive window will
not be visible.

4 Click Apply or OK to see the changes in the desktop tools.

Click Restore Default Colors to return to the default settings for desktop
tool colors, as well as for syntax highlighting colors.

Gray Background Color. For some UNIX5 platforms, there is a gray
background color for desktop tools, such as the Editor. This occurs when the
preference for Desktop tool colors is set to Use system colors, and the
system’s window manager uses gray as the background color default. To
change the color, clear the check box for Use system colors and then select a
new Background color from the palette.

MATLAB Syntax Highlighting Colors
In the Command Window, Command History, Editor, and Shortcuts callback
area, MATLAB conveys syntax information via different colors. This helps
you to easily identify elements, such as if/else statements. This feature is
known as syntax highlighting.

In the Command Window, only the input you type is highlighted; the output
from running MATLAB functions is not highlighted.

Note Use the Editor/Debugger language preferences to set syntax
highlighting colors for files you create for the TLC, C, C++, or Sun
Microsystems Java languages, or for HTML, and XML. For details, see
“Setting Language Preferences” on page 9-20.

5. UNIX is a registered trademark of The Open Group in the United States and other
countries.

2-152



Customizing the Desktop Using Preferences

When you choose a color under the MATLAB syntax highlighting colors
area, the Sample area indicates how it will look in your file.

The default colors for each element are as follows:

• Keywords — Flow control functions, such as for and if, as well as the
continuation ellipsis (...), are blue.

• Comments — All lines beginning with a %, designating the lines as
comments in MATLAB, are green. Similarly, the block comment symbols,
%{ and %}, as well as the code in between, appear in green. Text following
the continuation ellipsis on a line is also green because it is a comment.

• Strings— Type a string and it is maroon. When you complete the string
with the closing quotation mark ('), it becomes purple. For functions you
enter using command syntax instead of function syntax, the arguments
are highlighted as strings. This is to alert you that in command notation,
variables are passed as literal strings rather than as their values. For
more information, see “MATLAB Command Syntax” in the MATLAB
Programming Fundamentals documentation.

• Unterminated strings— A single quote without a matching single quote,
and whatever follows the quote, are maroon. This might alert you to a
possible error.

• System commands— Commands such as ! (shell escape) are gold.

• Errors — Error text that appears after you run code, including any
hyperlinks, is red.

2-153



2 Desktop

Click Restore Default Colors to return to the default settings for syntax
highlighting colors and desktop tool colors.

Note MATLAB syntax highlighting is enabled by default. If you find it is
disabled, follow these steps to reenable it:

1 Select File > Preferences > Editor/Debugger, and then click
Language.

2 In the Language drop-down menu, select MATLAB.

3 In the Syntax highlighting area, select Enable syntax highlighting.

4 Click Apply.

Other Colors
Specify the color for Hyperlinks, which applies to links in the Command
Window. If you use a dark background color for the Command Window, use a
light or other contrasting color for hyperlinks so that you can see them.

See Also

• For information about other preferences and how MATLAB stores
preferences, see “Specifying Options for MATLAB Using Preferences” on
page 2-124.

• For information about setting color preferences for the code analyzer,
variable and syntax highlighting and code cells, see “Setting Color
Preferences for Programming Tools” on page 2-154

Setting Color Preferences for Programming Tools
While the Colors preferences enable you to set colors for multiple desktop
tools, the Programming Tools color preferences apply to the Editor only.
These preferences help you to find and adjust various coding problems,
conditions, and structures within your code.

2-154



Customizing the Desktop Using Preferences

Select File > Preferences > Colors > Programming Tools to specify these
preferences for MATLAB code files:

• Code analyzer colors

• Variable and function highlighting colors

• Cell display options

Code Analyzer Colors
The code analyzer helps you to identify potential problems and refine your
MATLAB code. By default, the Editor indicates:

• Code for which there are warnings, by underlining that code with an orange
wavy line and placing an orange line in the message bar.

• Code for which there are errors, by underlining that code with an red wavy
line and placing an red line in the message bar.

For information on changing the default color for errors, see “Setting Colors
Preferences” on page 2-150.

• Code that MATLAB can fix automatically, by highlighting that code in tan.

For more information, see “Setting Code Analyzer Preferences” on page 9-124
and “Automatically Analyzing Code in the Editor” on page 9-108.

Variable and Function Highlighting Colors
The variable and function highlighting feature helps you to quickly find
instances of variables and functions throughout a MATLAB file. This
highlighting also helps you to determine how your code is setting, using, and
reusing variables and functions, which can help you to avoid variable scoping
problems at run time. By default, the Editor indicates:

• A function, subfunction, or local variable, by highlighting all instances of
the same function or variable in sky blue when you place the cursor in the
name. A line appears in the message bar for each highlighted function
or local variable.

• Nonlocal variables, by displaying their names in teal blue.

2-155



2 Desktop

For more information, see “Navigating an Open File in the Editor” on page
9-71, “Finding and Replacing Functions or Variables in the Current File” on
page 9-78, and “Determining Scope and Usage of Functions and Variables”
on page 9-135

Cell Display Options
Code cells enable you to evaluate and adjust subsections of your file when
running subsections of code to perform iterations. Code cells also enable you to
publish polished documents from your code. By default, the Editor indicates:

• The code cell that currently contains the cursor, by highlighting that cell in
yellow.

• Cell divisions, by inserting gray lines between each cell in the code. These
lines do not appear in the published file or in the printed file.

For more information see “Evaluating Subsections of Files Using Code Cells”
on page 9-175 and Chapter 11, “Publishing MATLAB Code”, respectively.

Setting Toolbars Preferences for Desktop Tools
You can customize some toolbars in the MATLAB application using Toolbars
preferences. You can add and remove buttons and other controls, as well as
change their position on the toolbar.

To customize a toolbar, follow these steps:

1 Select File > Preferences > Toolbars. You also can access Toolbars
Preferences by right-clicking a toolbar, and then selecting Customize
from the context menu.

2 From the Toolbar drop-down menu, select the toolbar that you want to
customize:

• MATLAB — the toolbar in the MATLAB desktop

• Editor — the toolbar in the MATLAB Editor

• Editor Cell Mode — a specialized toolbar in the Editor. For more
information, see “Evaluating Subsections of Files Using Code Cells”
on page 9-175.

2-156



Customizing the Desktop Using Preferences

• Workspace, the toolbar in the Workspace browser

• Current Folder, the toolbar in the Current Folder browser
The controls for the selected toolbar appear in the Layout and Controls
sections of the Toolbars Preferences pane.

3 In the Controls list, select or clear the check box for controls that you want
to display or remove from the toolbar, respectively.

To show the controls that appeared on the selected toolbar and in the
same order as when MATLAB was first installed, click Restore Factory
Controls.

4 In the Layout area, rearrange the order of the controls and separator bars
on the selected toolbar, by doing any of the following:

• Drag the icon for a control or separator bar to another position.

• Select the icon for a control or separator bar, and then click one of the

move buttons. For example, select the Demos icon , and then the
Move to the End button . The Demos icon moves to the right end.

• Add a separator bar after a selected control by clicking Add Separator

button: .

• Remove a control or separator bar, by selecting its icon, and then clicking

the Remove button .

5 Click Apply or OK. The toolbars in the desktop and Editor update to
reflect the changes you made.

2-157



2 Desktop

3%����������������
���
����%�����
�

��!�	���	�����

For information about hiding, showing, and moving toolbars, see “Using
Toolbar Features” on page 2-110.

2-158



Accessibility

Accessibility

In this section...

“Software Accessibility Support” on page 2-159

“Documentation Accessibility Support” on page 2-160

“Assistive Technologies” on page 2-161

“Installation Notes for Accessibility Support” on page 2-162

“Troubleshooting” on page 2-165

Software Accessibility Support
MathWorks products includes a number of modifications to make them more
accessible to all users. Software accessibility support for blind and visually
impaired users includes:

• Support for screen readers and screen magnifiers, as described in “Assistive
Technologies” on page 2-161

• Command-line alternatives for most graphical user interface (GUI) options

• Keyboard access to GUI components

• A clear indication of the current cursor focus

• Information available to assistive technologies about user interface
elements, including the identity, operation, and state of the element

• Nonreliance on color coding as the sole means of conveying information
about working with a GUI

• Noninterference with user-selected contrast and color selections and other
individual display attributes, as well as noninterference for other operating
system-level accessibility features

• Consistent meaning for bitmapped images used in GUIs

• HTML documentation that is accessible to screen readers

Keyboard access to the user interface includes support for “sticky keys,”
which allow you to press key combinations (such as Ctrl+C) sequentially
rather than simultaneously.

2-159



2 Desktop

Except for scopes and real-time data acquisition, MathWorks software does
not use flashing or blinking text, objects, or other elements having a flash or
blink frequency greater than 2 Hz and lower than 55 Hz.

MathWorks believes that its products do not rely on auditory cues as the sole
means of conveying information about working with a GUI. However, if you
do encounter any issues in this regard, please report them to the MathWorks
Technical Support group.

http://www.mathworks.com/contact_TS.html

Documentation Accessibility Support
Documentation is available in HTML format for all MathWorks products in
this release.

Accessing the Documentation
To access the documentation with a screen reader, go to the documentation
area on the MathWorks Web site at

http://www.mathworks.com/access/helpdesk/help/helpdesk.html

Navigating the Documentation
Note that the first page that opens lists the products. To get the
documentation for a specific product, click the link for that product.

The table of contents is in a separate frame. You can use a document’s table
of contents to navigate through the sections of that document.

Because you will be using a general Web browser, you will not be able to use
the search feature included in the MATLAB Help browser. You will have
access to an index for the specific document you are using. The cross-product
index of the MATLAB Help browser is not available when you are using a
general Web browser.

Products
The documentation for all products is in HTML and can be read with a screen
reader. However, for most products, most equations and most graphics are
not accessible.

2-160

http://www.mathworks.com/contact_TS.html

http://www.mathworks.com/access/helpdesk/help/helpdesk.html



Accessibility

The following product documentation has been modified (as described below)
to enhance its accessibility for people using a screen reader such as the
JAWS® application software from Freedom Scientific BLV Group:

• MATLAB — Many sections, but not the function reference pages.
Command line help on functions is accessible, however.

• Spreadsheet Link™ EX

• Optimization Toolbox™

• Signal Processing Toolbox™

• Statistics Toolbox™

Documentation Modifications
Modifications to the documentation include the following:

• Describing illustrations in text (either directly or via links)

• Providing text to describe the content of tables (as necessary)

• Restructuring information in tables to be easily understood when a screen
reader is used

• Providing text links in addition to any image mapped links

Equations
Equations that are integrated in paragraphs are generally explained in words.
However, most complex equations that are represented as graphics are not
currently explained with alternative text.

Assistive Technologies

Note To take advantage of accessibility support features, you must use
MathWorks products on a Microsoft Windows platform.

2-161



2 Desktop

Tested Assistive Technologies
MathWorks has tested the following assistive technologies:

• The JAWS screen reader application software 5.0, 6.0, and 7.0 for Windows
platforms from Freedom Scientific

• Built-in accessibility aids from Microsoft, including the Magnifier and
“sticky keys”

Use of Other Assistive Technologies
Although MathWorks has not tested other assistive technologies, such as
other screen readers or ZoomText® Xtra screen magnifier from Ai Squared,
MathWorks believes that most of the accessibility support built into its
products should work with most assistive technologies that are generally
similar to the ones tested.

If you use other assistive technologies than the ones tested, MathWorks is
very interested in hearing from you about your experiences.

Installation Notes for Accessibility Support

Note If you are not using a screen reader such as the JAWS application
software , you can skip this section.

This section describes the installation process for setting up your MATLAB
environment to work effectively with the JAWS software.

Use the regular MATLAB installation script to install the products for which
you are licensed. The installation script has been modified to improve its
accessibility for all users.

Note Java Access Bridge 2.0 software from Sun Microsystems is installed
automatically when you install MATLAB.

2-162



Accessibility

After you complete the product installation, there are some additional steps
you need to perform to ensure the JAWS software works effectively with
MathWorks products.

Setting Up JAWS Software
Make sure that the JAWS application software is installed on your machine.
If it is, there is probably a shortcut to it on the Windows desktop.

Setting up JAWS software involves these tasks:

1 Add the Java Access Bridge to your Windows path (for networked
installations only).

2 Create the accessibility.properties file.

These tasks are described in more detail below.

(For Networked Installations Only) Add Java Access Bridge Software
to Your Path. If you are running MATLAB in a networked installation
environment (that is, if the MATLAB Installer was not run on your machine),
you need to take the following steps to add Java Access Bridge to your
Windows path.

Note This procedure assumes the Start button in your Windows preferences
is set to Classic mode. To set Classic mode, from the Start button, select
Settings. Next select Task Bar and Menu. Then select the Start Menu
tab and make sure the Classic Start Menu option is enabled. Click OK
and you are done.

1 From the Start button, select Settings, next select Control Panel. Scroll
down and click the System icon to display the System Properties dialog box.

2 In the System Properties dialog box, select the Advanced tab.

3 Click Environment Variables.

4 Under System variables, select the Path option.

2-163



2 Desktop

5 Click the Edit button.

6 To the start of the Path environment variable, add the directory that
contains matlab.exe; for example:

C:\matlab\bin\win32;

Be sure to include that semicolon between the end of this directory name
and the text that was already there.

7 Click OK three times.

8 If the JAWS software is already running, exit and restart.

Note The JAWS software must be started with these path changes in
effect to work properly with MATLAB.

Create the accessibility.properties File.

1 Create a text file that contains the following two lines:

screen_magnifier_present=true
assistive_technologies=com.sun.java.accessibility.AccessBridge

2 Use the filename accessibility.properties.

3 Move the accessibility.properties file into

matlabroot\sys\java\jre\win32\jre1.5.0_07\lib\

Pronunciation Dictionary for the JAWS Software. As a convenience,
MathWorks provides a pronunciation dictionary for the JAWS application
software. This dictionary is in a file called MATLAB.jdf.

During installation, the file is copied to your system under the root directory
for MATLAB at sys\Jaws\matlab.jdf.

To use the dictionary, you must copy it to the \SETTINGS\ENU folder located
beneath the root installation directory for the JAWS software.

2-164



Accessibility

You need to restart the JAWS software and MATLAB for the settings to take
effect.

Testing
After you install the JAWS software and set up your environment as described
above, you should test to ensure the JAWS software is working properly:

1 Start the JAWS software.

2 Start MATLAB.

The JAWS software should start talking to you as you select menu items and
work with the user interface for MATLAB in other ways.

Troubleshooting
This section identifies workarounds for some possible issues you may
encounter related to accessibility support in MathWorks products.

JAWS Software Does Not Detect When Installation of the
MATLAB Software Has Started
When you select setup.exe, the Windows copying dialog box opens and you
are informed. After the files have been copied, the installation splash screen
opens, and then the installer starts. However, the JAWS software does not
inform you that the installer has begun: the installer either starts up below
other windows or applications or it is minimized. Since the installer is not an
active item, nothing is read.

Therefore, check the Windows applications bar for the installer. After you go
to the installer, you can use the JAWS software to perform the installation.

JAWS Software Stops Speaking
When many desktop components are open, the JAWS software sometimes
stops speaking for MATLAB.

If this happens, close most of the desktop components, exit MATLAB, and
restart.

2-165



2 Desktop

Command Output Not Read
In the MATLAB Command Window, the JAWS software does not
automatically read the results of commands.

This problem is likely to be caused by the way you have keyboard shortcuts
defined in MATLAB. Keyboard shortcuts activate a certain command in
MATLAB when you press a key or combination of keys. By default, MATLAB
assigns the Up Arrow and Down Arrow keys to the Previous History and
Next History commands in the Command Window. However, JAWS needs
these two keys to be assigned to the Cursor Up and Cursor Down commands
to be able to automatically read the results of commands.

You can check the shortcut setting for the Up Arrow key simply by pressing
this key while in the Command Window. If the cursor moves up on the screen,
then your settings are correct and this is not the cause of the problem. If the
Up Arrow key displays your most recent command, or performs any action
other than moving the cursor up, then follow the steps below to correct the
problem.

Note Reassigning the arrow key shortcuts means that you will no longer be
able to use these keys to activate the Previous History and Next History
commands. You can, however, assign any two unused keys to these actions.
See “Reassigning Shortcuts for Previous History and Next History” on page
2-169 in the documentation below.

For more information on either of the procedures described below, see
“Performing Desktop Actions Using Keyboard Shortcuts” on page 2-69 in the
“Desktop Tools and Development Environment” documentation.

Assigning Shortcuts for Cursor Up and Cursor Down. Follow these
steps to make the Up Arrow key a shortcut to Cursor Up and Down Arrow
a shortcut to Cursor Down. You only need to execute this procedure once.
When you close the dialog box with the OK button or the Apply and then
Cancel buttons, MATLAB saves your settings and restores them in your
next MATLAB session.

2-166



Accessibility

1 Begin by opening the MATLAB Preferences dialog box and clicking
Keyboard and then Shortcuts. This displays the Keyboard Shortcuts
Preferences dialog box.

Near the top, the Action name and Shortcuts columns list all available
actions and the shortcut keys currently assigned to them. Above Action
name, locate the filter field that reads ”Search by action name or shortcut”
in greyed-out text:

2 Enter the words “cursor up” in this field. The Action name and Shortcuts
columns should now show only the one selected action (Cursor Up) and any
shortcut keys that have been assigned to that action (Up, in this case):

Click the line that shows this action-to-shortcut key association:

2-167



2 Desktop

3 The next panel down shows that the Up (i.e., Up Arrow) shortcut is
already assigned to the selected action (Cursor Up). However, as shown
in the Tools with shortcut column, this association applies only in the
MATLAB Editor, and not in the Command Window. Click the text under
Tools with shortcut that reads MATLAB Editor:

4 This displays a checkbox for each application in which you can associate
the Up Arrow key with Cursor Up. Click the line that reads Command
Window to put a check in the checkbox for that selection:

Move the cursor away, and the Tools with shortcut column now reads
All Tools.

5 The panel below that, labeled All Possible Conflicts, shows that the
shortcut you have just established conflicts with an existing shortcut in the
Command Window. You now have two actions, Cursor Up and Previous

2-168



Accessibility

History Command, assigned to the same key (Up Arrow). To resolve this
conflict, select the line that shows Previous History Command, and then
click the Unassign button:

Click Apply to make this setting active.

6 Repeat steps 2 through 5 to assign the Down Arrow key to the Cursor
Down command in the Command Window. This also removes the existing
shortcut between Down Arrow and Next History command.

Reassigning Shortcuts for Previous History and Next History. At
this point, you have made assignments for the Cursor Up and Cursor Down
desktop actions. The previously defined shortcuts for the Previous History
and Next History commands have been removed. If you would like to retain
these latter two shortcuts, you need to assign new keys to them. To do this,
follow the steps below:

1 Type “previous history” in the box above Action name. Note that just
the abbreviated “prev hist” will suffice. Next, click the line below Action
name that reads Previous History Command:

2-169



2 Desktop

2 In the next panel down, click the line that displays the icon. This opens
a key entry field at this location:

3 Press the key or key combination you want to use as the shortcut for the
Previous History action. For example, if you want Alt+Up Arrow to
be the shortcut for Previous History, hold down the Alt key and press
the Up Arrow key:

4 View the All Possible Conflicts panel to see if there are any conflicts with
this assignment. If there are no conflicts, click Apply to make the setting
active. If you do have conflicts, then either choose a different key to use
as the shortcut, or see the documentation on “Evaluating and Resolving
Keyboard Shortcut Conflicts” on page 2-85 in the “Desktop Tools and
Development Environment” documentation.

2-170



Accessibility

5 Repeat steps 1 through 4 to assign a shortcut key to the Next History
command in the Command Window.

Some GUI Menus Are Treated as Check Boxes
For some GUIs (for example, the figure window), menus are treated by the
JAWS software as though they are check boxes, whether or not they actually
are.

You can choose a menu item for such GUIs by using accelerator keys (e.g.,
Ctrl+N to select New Figure), if one is associated with a menu item. You
can also use mnemonics for menu navigation (e.g., Alt+E).

Note that check boxes that you encounter by tabbing through the elements of
a GUI are handled properly.

Text Ignored in Some GUIs
For some dialog boxes, the JAWS software reads the dialog box title and any
buttons, but ignores any text in the dialog box.

Also, in parts of some GUIs, such as some text-entry fields, the JAWS
software ignores the label of the field. However, the JAWS software will
read any text in the text box.

2-171



2 Desktop

Macintosh Platform — Differences

GUI Conventions in the Documentation and
Macintosh Platforms
MATLAB on the Apple Macintosh platform sometimes uses conventions that
are standard for the Macintosh platform, but might be different from what
the MATLAB documentation states. The documentation typically presents
conventions for Microsoft Windows platforms. The intended action for the
Macintosh platform is typically obvious. For example, the documentation
might instruct you to do the following, which is the convention on Windows
platforms:

1 Select File > Save.

2 Select Yes, No, or Cancel from the Save dialog box.

However, on Macintosh platforms, the Save dialog box presents the options
Don’t Save and Save.

Pointer Device Instructions and Macintosh Platforms
The standard mouse for Macintosh platforms is a single-button device.
Other platforms use a mouse with more than one button. MATLAB takes
advantage of these buttons. The documentation does not usually present the
equivalent instructions for the Macintosh platform. When the documentation
instruction is right-click, use Ctrl+click on the Macintosh platform. When
the documentation instruction is middle-click, use Command+click on the
Macintosh platform.

Using File Browser GUIs on Macintosh Platforms to
Navigate Within the MATLAB Root Folder
On Macintosh platforms, you cannot use a file browser GUI to navigate
directly to a file or folder within the MATLAB root folder. (The MATLAB root
folder, also called matlabroot, is the folder where MATLAB is installed).
When you use the Macintosh Finder or a file browser GUI in MATLAB and
select Applications/R2009b_MATLAB, no contents appear. On Macintosh
platforms, the MATLAB root folder is R2009b_MATLAB.app, and the Macintosh

2-172



Macintosh® Platform — Differences

operating system does not display the contents of applications (items with
the .app extension).

Here are some ways to view or open the contents of the MATLAB root folder
via a file browser GUI:

• In the Macintosh Finder, right-click (or Ctrl+click) MATLAB_R2008b, and
from the context menu, select Show Package Contents.

• In a MATLAB GUI where you cannot access the contents of MATLAB_R2008b,
follow these steps:

1 Press Command+Shift+G to open the Go To Folder dialog box.

2 In the Go To Folder dialog box, enter the full path to matlabroot, for
example, /Applications/MATLAB_R2008b.app/.

3 Press OK.
The MATLAB GUI displays the contents of the MATLAB root folder.

• Use an alternative to the GUI. For example, instead of using File > Open
to open a file in the Editor, use the edit function.

• In the Command Window, change the current folder to matlabroot by
running cd(matlabroot), and then open the GUI. Some GUIs then display
the contents of matlabroot.

2-173



2 Desktop

2-174



3

Running Functions —
Command Window and
History

The Command Window is where you run (execute) MATLAB language
statements, while the Command History is a log of the statements you have
run.

• “Using the Command Window” on page 3-2

• “Running Functions and Programs, and Entering Variables” on page 3-5

• “Entering Statements in the Command Window” on page 3-17

• “Assistance While Entering Statements” on page 3-23

• “Controlling Output in the Command Window” on page 3-47

• “Finding Text in the Command Window” on page 3-52

• “Preferences for the Command Window” on page 3-60

• “Using the Command History Window” on page 3-66

• “Preferences for Command History” on page 3-78



3 Running Functions — Command Window and History

Using the Command Window

In this section...

“About the Command Window” on page 3-2

“Opening the Command Window” on page 3-2

“Using the Command Window Prompt” on page 3-3

“Changing How the Command Window Looks” on page 3-4

About the Command Window
The Command Window is one of the main tools you use to enter data, run
MATLAB code, and display results. If you have an active Internet connection,
you can watch the Working in the Development Environment video demo for
an overview of the major functionality.

Opening the Command Window
When the Command Window is not open, access it by selecting Command
Window from the Desktopmenu. Alternatively, open the Command Window
with the commandwindow function.

If you prefer a simple command-line interface without the other MATLAB
desktop tools visible, select one of the following:

• Desktop > Desktop Layout > Command Window Only

The desktop contains only the Command Window, as shown in the image
that appears after this list.

• Desktop > Desktop Layout > All but Command Window Minimized

All tools open and are minimized in the desktop, except the Command
Window, which is maximized. The Editor also remains maximized if it
was open and contained a document at the time you chose the All but
Command Window Minimized menu item.

For more information, see “Opening and Arranging Desktop Tools” on page
2-5.

3-2



Using the Command Window

To restore the desktop to the default arrangement, selectDesktop > Desktop
Layout > Default.

Using the Command Window Prompt
Enter statements at the Command Window prompt. The prompt indicates
that MATLAB is ready to accept input from you. This prompt is also known
as the command line.

The prompt can be any one of the following:

• >>— Indicates that the Command Window is in normal mode.

• EDU>> — Indicates that the Command Window is in normal mode, in
MATLAB Student Version.

• K>> — Indicates that MATLAB is in debug mode.

Type dbquit to return to normal mode. For more information, see Chapter
9, “Editing and Debugging MATLAB Code”

3-3



3 Running Functions — Command Window and History

Changing How the Command Window Looks
There are various ways you can change how the Command Window looks. The
following table provides links to sections that describe how.

Action See This Section

Move or resize the Command
Window.

“Opening and Arranging Desktop Tools”
on page 2-5

Change fonts in the Command
Window.

“Setting Fonts Preferences for Desktop
Tools” on page 2-141

Show and hide buttons, wrap
lines, and similar details.

“Preferences for the Command Window”
on page 3-60

3-4



Running Functions and Programs, and Entering Variables

Running Functions and Programs, and Entering Variables

In this section...

“Running Statements at the Command-Line Prompt” on page 3-5

“Stopping Execution” on page 3-8

“Running External Programs” on page 3-8

“Evaluating or Opening a Selection” on page 3-11

“Displaying Hyperlinks in the Command Window” on page 3-12

Running Statements at the Command-Line Prompt
The following sections describe how to run statements at the prompt and
examine errors:

• “Entering Variables and Running Functions” on page 3-5

• “Running MATLAB Program Files Not Provided by MathWorks” on page
3-7

• “Examining Errors” on page 3-7

• “Order of Processing” on page 3-8

Entering Variables and Running Functions
At the prompt, enter data and run functions. For example, to create A, a
3-by-3 matrix, type

A = [1 2 3; 4 5 6; 7 8 10]

When you press the Enter or Return key after typing the line, the MATLAB
software responds with:

A =

1 2 3
4 5 6
7 8 10

3-5



3 Running Functions — Command Window and History

To run a function, it must be in the current folder or in a folder on the search
path. By default, functions included with MATLAB are on the search path.
Therefore, you do not need to do anything special to run functions provided
with MathWorks products.

Type the function including all arguments and press Enter or Return.
MATLAB displays the result. For example, type

magic(2)

and MATLAB returns

ans =
1 3
4 2

To determine the name of the file currently running, use mfilename.

To find the name of a function that MathWorks provides, use the function
browser—see “Finding Functions Using the Function Browser” on page 3-40.

What Is a Statement?. All the information you type before pressing Enter
or Return is known as a statement. Statements can include:

• Variable assignments: For example, a = 3

• Functions and their arguments: functions that can accept input arguments
and return output arguments, for example, magic.

• Commands: functions provided with MATLAB or toolboxes that do not
accept input arguments, for example, clc, which clears the Command
Window.

• Scripts: MATLAB program files you write that do not take input arguments
or return output arguments, for example, myfile.m.

Some functions support a form that does not require an input argument,
thereby operating as commands. For convenience, the term function is used to
refer to both functions and commands.

When you enter program control statements, such as if ... end, the
prompt does not appear until you complete the set of functions. In the

3-6



Running Functions and Programs, and Entering Variables

following example, you press Enter at the end of each line, but the prompt
does not appear until you complete the set of statements with end.

Running MATLAB Program Files Not Provided by MathWorks
You can run files that contain code in the MATLAB language that you created
or that other users created, as follows:

1 Ensure that the file is in the current folder or on the search path.

Otherwise, MATLAB returns an Undefined function or variable error
or a File not found error. For more information, see “Determining if
MATLAB Can Access a File” on page 7-68.

2 Type the name of the file in the Command Window.

3 Complete the statement by adding arguments.

4 Press Enter or Return.

For a MATLAB script, you can also use the run function and specify the full
pathname to a script.

Examining Errors
If an error message appears when you run a file, do one of the following:

• Click the underlined portion of the error message.

3-7



3 Running Functions — Command Window and History

• Position the cursor within the file name and press Ctrl+Enter.

The offending file opens in the Editor, scrolled to the line containing the error.

Order of Processing
In MATLAB, you can only run one process at a time. If MATLAB is busy
running one function, any further statements you issue are buffered in a
queue. The next statement runs when the previous statement finishes.

Stopping Execution
To stop execution of whatever is currently running, press Ctrl+C or
Ctrl+Break. On Apple Macintosh platforms, you can also use Command+.
(the Command key and the period key) to stop the program. For certain
operations, stopping the program might generate errors in the Command
Window.

For files that run a long time, or that call built-ins or MEX-files that run a
long time, Ctrl+C does not always effectively stop execution. Typically, this
happens on Microsoft Windows platforms rather than UNIX6 platforms. If
you experience this problem, help MATLAB break execution by including a
drawnow, pause, or getframe function in your file, for example, within a large
loop. Note that Ctrl+C might be less responsive if you start MATLAB with
the -nodesktop option.

Running External Programs
The exclamation point character (!) sometimes called bang, is a shell escape
and indicates that the rest of the input line is a command to the operating
system. Use it to invoke utilities or call other executable programs without
quitting MATLAB. On UNIX platforms, for example, the following code
invokes the vi editor for a file named yearlystats.m:

!vi yearlystats.m

After the external program completes or you quit the program, the operating
system returns control to MATLAB. Add & to the end of the line, such as

6. UNIX is a registered trademark of The Open Group in the United States and other
countries.

3-8



Running Functions and Programs, and Entering Variables

!dir &

on Windows platforms to display the output in a separate window or to run
the application in background mode. For example

!excel.exe &

opens Microsoft Excel software and returns control to the Command Window
so you can continue running MATLAB language statements.

Restrictions maintained within the operating system determine the maximum
length of the argument list you can provide as input to the bang (!) command.
If you are running the Microsoft Windows XP operating system, for example,
the length of the argument list input to the bang command cannot exceed
8189 characters.

See the reference pages for the unix, dos, and system functions for details
about running external programs that return results and status.

Note To execute operating system commands with specific environment
variables, include all commands to the operating system within the system
call. Separate the commands using & (ampersand) for DOS, and ; (semicolon)
for UNIX platforms. This applies to the MATLAB ! (bang), dos, unix, and
system functions. Another approach is to set environment variables before
starting MATLAB.

On Macintosh platforms, you cannot run AppleScript (from Apple) directly
from MATLAB. However, you can run the Apple Mac OS X osascript
function from the MATLAB unix or ! (bang) function to run AppleScript
from MATLAB.

Running UNIX Programs That Are Off the System Path
You can run a UNIX program from MATLAB when the folder containing
that file is not on the UNIX system path that is visible to MATLAB. To
determine the system path that is visible to MATLAB, type the following in
the Command Window:

getenv('PATH')

3-9



3 Running Functions — Command Window and History

You can make modifications to the system path that persist for the current
MATLAB session or across subsequent MATLAB sessions, as described in the
sections that follow.

Modify the System Path for the Current MATLAB Session. Do one of
the following:

• Change the current folder in MATLAB to the folder that contains the
program you want to run.

• Issue these commands using the Command Window:

path1 = getenv('PATH')
path1 = [path1 ':/usr/local/bin']
setenv('PATH', path1)
!echo $PATH

If you restart MATLAB, the folder is no longer on the system path visible
to MATLAB.

Modify the System Path Across MATLAB Sessions Within the Current
Shell Session. To add a folder to the system path from the shell:

1 Stop MATLAB.

2 Depending on the shell you are using, type one of the following at the
system command prompt, where myfolder is the folder that contains the
program you want to run:

• Type this if you are using bash or a related shell:

export PATH="$PATH:myfolder"

• Type this if you are using tcsh or a related shell:

setenv PATH "${PATH}:myfolder"

3 Start MATLAB.

4 In the MATLAB Command Window, type:

!echo $PATH

3-10



Running Functions and Programs, and Entering Variables

If you restart MATLAB within the current shell session, the folder remains
on the system path visible to MATLAB. However, if you restart the shell
session, and then restart MATLAB, the folder is no longer on the system
path visible to MATLAB.

Modify the System Path Across All MATLAB Sessions. To make
adjustments that persist across shell and MATLAB sessions, add the following
commands to the MATLAB startup file as described in “Specifying Startup
Options in the MATLABStartup File” on page 1-15:

path1 = getenv('PATH')
path1 = [path1 ':/usr/local/bin']
setenv('PATH', path1)
!echo $PATH

Evaluating or Opening a Selection
Make a selection in the Command Window and press Enter or Return. The
selection is appended to whatever is at the prompt, and MATLAB executes it.

Similarly, you can select a statement from any MATLAB desktop tool,
right-click, and select Evaluate Selection from the context menu.
Alternatively, for some tools, press Enter or Return. For example, you
can scroll up in the Command Window, select a statement you entered
previously, and then press Enter to run it. If you try to evaluate a selection
while MATLAB is busy, for example, running a file, execution waits until
the current operation is done.

You can open a function, file, variable, or Simulink model from the Command
Window. Select the name in the Command Window, and then right-click and
select Open Selection from the context window. This runs the open function
for the item you selected so that it opens in the appropriate tool:

• Text files open in the Editor.

• Figure files (.fig) open in a figure window.

• Variables open in the Variable Editor.

• Models open in Simulink software.

3-11



3 Running Functions — Command Window and History

See the open reference page for details about what action occurs if there are
name conflicts. If no action exists to work with the selected item, Open
selection calls edit.

Function Alternatives

• To open a file in the Editor, use open or edit.

• To display a file in the Command Window, use type.

Displaying Hyperlinks in the Command Window
You can use MATLAB functions to create hyperlinks in the Command
Window. The created hyperlink can:

• Open an HTML page in a MATLAB Web browser using an href string

• Transfer files via the file transfer protocol (FTP)

• Run one or more MATLAB functions by prefixing them with matlab:
(called matlabcolon syntax)

Creating Hyperlinks to Web Pages
When creating a hyperlink to a Web page, append a full hypertext string
on a single line as input to the disp or fprintf command. For example,
the following command:

disp('<a href = "http://www.mathworks.com">The MathWorks Web Site</a>')

displays the following hyperlink in the Command Window:

The MathWorks Web Site

When you click this hyperlink, a MATLAB Web browser opens and displays
the requested page.

Transferring Files Using FTP
To create a link to an FTP site, enter the site address as input to the disp
command as follows:

disp('<a href = "ftp://ftp.mathworks.com">The MathWorks FTP Site</a>')

3-12

http://www.mathworks.com


Running Functions and Programs, and Entering Variables

This command displays the following as a link in the Command Window:

The MathWorks FTP Site

When you click the link, a MATLAB browser opens and displays the requested
FTP site.

Running MATLAB Functions from Hyperlinks
The special keyword matlab: lets you embed commands in other functions.
Most commonly, the functions that contain it display hyperlinks, which
execute the commands when you click the hyperlink text. Functions that
support matlab: syntax include disp, error, fprintf, help, and warning.

Use matlab: syntax to create a hyperlink in the Command Window that
runs one or more functions. For example, you can use disp to display an
executable hyperlink as follows:

disp('<a href="matlab:a=3; b=4;c=hypot(a,b)">Hypotenuse</a>')

displays in the Command Window as

Hypotenuse

Clicking the hyperlink executes the three commands following matlab:,
resulting in

c =
5

Executing the link creates or redefines the variables a, b, and c in the base
workspace.

The argument to disp is an <a href> HTML hyperlink. Include the full
hypertext string, from '<a href= to </a>' within a single line, that is, do not
continue a long string on a new line. No spaces are allowed after the opening
< and before the closing >. A single space is required between a and href.

You cannot directly execute matlab: syntax. That is, if you type

matlab:a=3; b=4;c=hypot(a,b)

3-13

ftp://ftp.mathworks.com


3 Running Functions — Command Window and History

you receive an error, because MATLAB interprets the colon as an array
operator in an illegal context:

??? matlab:a=3; b=4;c=hypot(a,b)
|

Error: The expression to the left of the equals sign
is not a valid target for an assignment.

You do not need to use matlab: to display a live hyperlink to the Web. For
example, if you want to link to an external Web page, you can use disp, as
follows:

disp('<a href="http://en.wikipedia.org/wiki/Hypotenuse">Hypotenuse</a>')

The result in the Command Window looks the same as the previous example,
but instead opens a page at en.wikipedia.org:

Hypotenuse

Using matlab:, you can:

• “Run a Single Function” on page 3-14

• “Run Multiple Functions” on page 3-14

• “Provide Command Options” on page 3-15

• “Include Special Characters” on page 3-15

Run a Single Function. Use matlab: to run a specified statement when you
click a hyperlink in the Command Window. For example, run this command:

disp('<a href="matlab:magic(4)">Generate magic square</a>')

It displays this link in the Command Window:

When you click the link, MATLAB runs magic(4).

Run Multiple Functions. You can run multiple functions with a single link.
For example, run this command:

3-14

http://en.wikipedia.org/wiki/Hypotenuse


Running Functions and Programs, and Entering Variables

disp('a href="matlab: x=0:1:8;y=sin(x);plot(x,y)">Plot x,y</a>')

It displays this link in the Command Window:

When you click the link, MATLAB runs this code:

x = 0:1:8;
y = sin(x);
plot(x,y)

Redefine x in the base workspace:

x = -2*pi:pi/16:2*pi;

Click the hyperlink, Plot x,y again and it changes the current value of x
back to 0:1:8. The code that matlab: runs when you click the Plot x,y
defines x in the base workspace.

Provide Command Options. Use multiple matlab: statements in a file
to present options, such as

disp('<a href = "matlab:state = 0">Disable feature</a>')
disp('<a href = "matlab:state = 1">Enable feature</a>')

The Command Window displays the links that follow. Depending on which
link you click, MATLAB sets state to 0 or 1.

Include Special Characters. MATLAB correctly interprets most strings
that include special characters, such as a greater than symbol (>). For
example, the following statement includes a greater than symbol (>).

disp('<a href="matlab:str = ''Value > 0''">Positive</a>')

and generates the following hyperlink.

3-15



3 Running Functions — Command Window and History

Some symbols might not be interpreted correctly and you might need to use
the ASCII value for the symbol. For example, an alternative way to run the
previous statement is to use ASCII 62 instead of the greater than symbol:

disp('<a href="matlab:str=[''Value '' char(62) '' 0'']">Positive</a>')

3-16



Entering Statements in the Command Window

Entering Statements in the Command Window

In this section...

“Case and Space Sensitivity” on page 3-17

“Cut, Copy, Paste, and Undo Features” on page 3-18

“Entering Multiple Lines Without Running Them” on page 3-18

“Entering Multiple Functions in a Line” on page 3-20

“Entering Multiple-Line (Long) Statements Using Line Continuation” on
page 3-20

“Recalling Previous Lines in the Command Window” on page 3-21

“Navigating Above the Command Line” on page 3-22

“See Also” on page 3-22

Case and Space Sensitivity
Briefly, MATLAB code is sensitive to casing, but insensitive to blank spaces.
For details, see the following sections:

• “Upper and Lowercasing for Variables, Files, and Functions” on page 3-17

• “Spaces in Expressions” on page 3-18

Upper and Lowercasing for Variables, Files, and Functions
In MATLAB code, use an exact match with regard to case for variables, files,
and functions. For example, if you have a variable a, you cannot refer to
that variable as A. It is a best practice to use lowercase only when naming
functions. This is especially useful when you use both Microsoft Windows and
UNIX7 platforms because their file systems behave differently with regard
to case.

Note that if you use the help function, the help displays function names in
all uppercase, for example, PLOT, solely to distinguish a function name from
the rest of the text. Some functions for interfacing to Sun Microsystems Java

7. UNIX is a registered trademark of The Open Group in the United States and other
countries.

3-17



3 Running Functions — Command Window and History

software do use mixed case and the command-line help and the documentation
accurately reflect that.

Spaces in Expressions
Blank spaces around operators such as -, :, and ( ), are optional, but they
can improve readability. For example, MATLAB interprets the following
statements the same way.

y = sin (3 * pi) / 2
y=sin(3*pi)/2

Cut, Copy, Paste, and Undo Features
To edit text in the Command Window, choose Cut, Copy, Paste, Undo and
Redo from the Edit menu.

Undo applies to some of the actions listed in Edit menu. You can perform an
undo operation multiple times in succession. Redo reverses an Undo.

Press the Esc (escape) key to clear everything you have entered on the
current line.

If you press Enter, you cannot edit a line after entering it, even though you
have not completed the flow. In that event, use Ctrl+C to end the flow, and
then enter the statements again.

Entering Multiple Lines Without Running Them
To enter multiple statements on multiple lines before running any of the
statements:

1 Type a statement on a line, and then use the keyboard shortcut for Break
Line Without Code Execution (which is Shift+Enter by default).

The cursor moves down to the next line, which does not show a prompt.

2 Type the next statement.

3 Repeat steps 1 and 2 until you have typed all the statements you want.

3-18



Entering Statements in the Command Window

4 Edit the statements, if needed.

Then, to run all of the lines, press Enter or Return.

For example, if you enter the following:

>> a=1 % Press Shift+Enter to advance without executing this statement.

b=2 % Press Shift+Enter to advance without execution. You can edit this or the above line.

c=a+b % Press Enter to execute all three statements.

MATLAB executes all three lines and returns the following:

a =
1

b =
2

c =
3

>>

When you enter a paired keyword statement on multiple lines, such as
for and end, you do not need to use Shift+Enter. You can use the typical
process of pressing Enter after each line in the set to advance to the next
line. MATLAB executes the keyword statement after you complete it on the
last line. For example:

>> for r=1:5 % Press Enter. MATLAB advances a line where you continue the paired keyword statement.

a=pi*r^2 % Press Enter. MATLAB advances a line where you continue the paired keyword statement.

end % Press Enter to execute the paired keyword statement.

MATLAB executes all three lines and returns the following:

a =
3.141592653589793

a =
12.566370614359172

a =
28.274333882308138

See also “Performing Desktop Actions Using Keyboard Shortcuts” on page
2-69.

3-19



3 Running Functions — Command Window and History

Entering Multiple Functions in a Line
To enter multiple functions on a single line, separate the functions with a
comma ( , ) or semicolon ( ; ). Using the semicolon instead of the comma
suppresses the output for the command preceding the semicolon. For example,
type three functions on one line to build a table of logarithms, and then press
the Enter or Return key:

format short; x = (1:10)'; logs = [x log10(x)]

MATLAB runs the functions in order, from left-to-right.

Entering Multiple-Line (Long) Statements Using Line
Continuation

To enter a multiple-line statement:

1 At the end of the line, indicate that the statement continues on the next
line by entering three periods (...), also called dots, stops, or an ellipsis.

MATLAB ignores anything appearing after the ... on a line, and continues
processing on the next line. This effectively creates a comment out of the
text following the ... on a line.

2 Press the Enter or Return key.

3 Continue typing the statement on the next line.

4 Repeat steps 1 through 3 until you complete the statement.

5 Press Enter or Return when you complete the statement.

For items in single quotation marks, such as strings, you must complete the
string in the line on which it was started. For example, completing a string as
shown here

headers = ['Author Last Name, Author First Name, ' ...
'Author Middle Initial']

3-20



Entering Statements in the Command Window

results in

headers =
Author Last Name, Author First Name, Author Middle Initial

MATLAB produces an error when you do not complete the string, as shown
here:

headers = ['Author Last Name, Author First Name, ...
Author Middle Initial']

??? headers = ['Author Last Name, Author First Name, ...
Error: Missing variable or function.

Recalling Previous Lines in the Command Window
Assuming you have not changed the default keyboard shortcuts for the arrow,
tab, and control keys, you can recall, edit, and reuse functions you typed
earlier by using these keys. For example, suppose you mistakenly enter

rho = (1+ sqt(5))/2

Because you misspelled sqrt, MATLAB responds with

Undefined function or variable 'sqt'.

Instead of retyping the entire line, press the up arrow key. The previously
typed line is redisplayed. Use the left arrow key to move the cursor, add the
missing r, and press Enter or Return to run the line. Repeated use of the
up arrow key recalls earlier lines, from the current and previous sessions.
Using the up arrow key, you can recall any line maintained in the Command
History window.

Similarly, specify the first few characters of a line you entered previously and
press the up arrow key to recall the previous line. For example, type the
letters plo and then press the up arrow key. This displays the last line that
started with plo, as in the most recent plot function. Press the up arrow key
again to display the next most recent line that began with plo, and so on.
Then press Enter or Return to run the line. This feature is case sensitive.

3-21



3 Running Functions — Command Window and History

If the keys do not behave as documented here, check the actions currently
assigned to them, as described in “Displaying Keyboard Shortcuts” on page
2-75.

Navigating Above the Command Line
To look at or copy information in the Command Window that is above the
command-line prompt (>> ), use the mouse and scroll bar, key combinations
such as Ctrl+Home, and search features. By default, the up and down arrow
keys recall statements, and so by default, you cannot use these keys to move
the cursor when it is above the command line.

To use the up and down arrow keys to move the cursor when it is above the
command line, customize the keyboard shortcuts for the Cursor Up and
Cursor Down actions in the Keyboard Shortcuts preferences. See also
“Customizing Keyboard Shortcuts” on page 2-79.

See Also

• “Assistance While Entering Statements” on page 3-23

• “Finding Text in the Command Window” on page 3-52

3-22



Assistance While Entering Statements

Assistance While Entering Statements

In this section...

“Highlighting Syntax to Help Ensure Correct Entries” on page 3-23

“Matching Delimiters (Parentheses)” on page 3-24

“Completing Statements in the Command Window — Tab Completion”
on page 3-24

“Viewing Function Syntax Hints While Entering a Statement” on page 3-33

“Getting Help for a Function Shown in the Command Window or Editor”
on page 3-38

“Finding Functions Using the Function Browser” on page 3-40

“See Also” on page 3-46

Highlighting Syntax to Help Ensure Correct Entries
To help you find elements, such as matching if/else statements, some
entries appear in different colors in the Command Window. This is known
as syntax highlighting. By default:

• Keywords are blue.

• Strings are purple.

• Unterminated strings are maroon.

3-23



3 Running Functions — Command Window and History

Except for errors, output in the Command Window does not appear with
syntax highlighting.

For information on changing the syntax highlighting colors, see “Setting
Colors Preferences” on page 2-150.

Matching Delimiters (Parentheses)
You can instruct the MATLAB software to notify you about
matched and unmatched delimiters. For example, when you type
a parenthesis, bracket, or brace, MATLAB highlights the matched
delimiter in the pair. To use the delimiter matching feature, select
File > Preferences > Keyboard > Delimiter Matching.

For more information, see “Setting Delimiter Matching Preferences” on page
2-139.

Completing Statements in the Command Window —
Tab Completion
MATLAB helps you complete the names of known items as you type them in
the Command Window so that you can avoid spelling mistakes and can avoid
looking up the information in other tools. To use tab completion:

1 Ensure that the tab completion preference for the Command Window
is selected.

For details, see “Setting Keyboard Preferences for Desktop Tools” on page
2-138.

2 Type the first few characters of the item name, and then press the Tab key.

These are the items for which MATLAB can complete the names:

• Functions or models on the search path or in the current folder

• MATLAB objects

• File names and folders, including object-oriented programming package
and class folders

3-24



Assistance While Entering Statements

• Variables, including structures, in the current workspace

• Handle Graphics property names

These examples demonstrate how to use tab completion in the Command
Window:

• “Basic Example — Unique Completion” on page 3-25

• “Multiple Possible Completions” on page 3-26

• “Tab Completion for Folders and File Names” on page 3-28

• “Tab Completion for Class Folders and File Names” on page 3-29

• “Tab Completion for Structures” on page 3-31

• “Tab Completion for Handle Graphics Properties” on page 3-32

• “Tab Completion for MATLAB Objects” on page 3-32

Basic Example — Unique Completion
This example illustrates a basic use for tab completion. After creating a
variable, costs_march, type

costs

and then press Tab. MATLAB automatically completes the name of the
variable, displaying:

costs_march

Then complete the statement, adding any arguments, operators, or options,
and press Return or Enter to run it. In this example, if you press Enter,
MATLAB displays the contents of costs_march. If MATLAB does not
complete the name costs_march but instead moves the cursor to the right,
you do not have the preference set for tab completion. If MATLAB displays No
Completions Found, costs_march does not exist in the current workspace.

You can use tab completion anywhere in the line, not just at the beginning.
For example, if you type

a = cost

3-25



3 Running Functions — Command Window and History

and press Tab, MATLAB completes costs_march. You can also select co or
position the cursor after co and press Tab to complete costs_march.

Multiple Possible Completions
If there is more than one name that starts with the characters you typed.
then when you press the Tab key, MATLAB displays a list of all names that
start with those characters. For example, type

cos

and press Tab. MATLAB displays the following.

The resulting list of possible completions includes the variable name you
created, costs_march, and functions that begin with cos, including cosets
from the Communications Toolbox™ software, if it is installed on the system
and on the search path in MATLAB. MATLAB completes variable names in
the currently selected workspace, and the names of functions and models on
the search path or in the current folder.

Continue typing to make your entry unique. For example, type the next
character, such as t in the example. MATLAB selects the first item in the
list that matches what you typed, in this case, costs_march. Press Enter (or

3-26



Assistance While Entering Statements

Return) or Tab to select that item, which completes the name at the prompt.
In the example, MATLAB displays costs_march at the prompt. Add any
arguments, and press Enter again to run the statement.

You can navigate the list of possible completions using up and down arrow
keys, and Page Up and Page Down keys. You can clear the list without
selecting anything by pressing Esc (escape key). Note that the list of possible
completions might include items that are not valid commands, such as private
functions.

Narrowing Completions Shown. You can narrow the list of completions
shown by typing a character and then pressing Tab if the Command Window
preference Tab key narrows completions is selected. This is particularly
useful for large lists. For example, type cam and press Tab to see the possible
completions. There is a scroll bar with the list because there are too many
completions to be seen at once.

Type p and press Tab again. MATLAB narrows the list, showing only all
possible camp completions.

3-27



3 Running Functions — Command Window and History

Continue narrowing the list in the same way. For the above example, type o
and press Tab to further narrow the list. Press Enter or Return to select
an item, which completes the name at the prompt.

Tab Completion for Folders and File Names
Tab completion works for folders and file names in MATLAB functions.

For example, type

edit d:/

and press Tab.

MATLAB displays the list of folders and files in d, from which you can choose
one. Continue by typing

my_M

and press Tab.

MATLAB displays

edit d:/my_MATLAB_files/

3-28



Assistance While Entering Statements

where my_MATLAB_files is the only folder on your d drive whose name begins
with my_M. Continue using tab completion to display and complete folder
names or file names until you finish the edit statement.

Tab completion for folders and file names is not supported for functions you
write.

Tab Completion for Class Folders and File Names
Tab completion for class folders (including @-folders), package folders, and
file names works the same as for standard folders.

For example, consider the containers package in the matlabroot folder,
which is the folder in which MATLAB is installed. The containers package
contains a Map @- folder and a Map.m file. The folder structure appears as
follows:

+containers\@Map\Map.m

If you type

edit cont

and press Tab, MATLAB adds characters to cont until MATLAB finds a
character that is not common to any names on the MATLAB path. MATLAB
displays a list from which to choose, such as the following

3-29



3 Running Functions — Command Window and History

If you select containers, add a dot, and then press Tab, MATLAB displays
the following.

If you add a dot, press Tab, and scroll down a bit, MATLAB displays the
following.

3-30



Assistance While Entering Statements

Tab Completion for Structures
For structures in the current workspace, after the period separator, press
Tab. For example, type

mystruct.

and then press Tab to display all fields of mystruct. If you type a structure
and include the start of a unique field after the period, pressing Tab completes
that structure and field entry.

For example, type

mystruct.n

and press Tab, which completes the entry mystruct.name, where mystruct
contains no other fields that begin with n.

3-31



3 Running Functions — Command Window and History

Tab Completion for Handle Graphics Properties
Complete the names of Handle Graphics properties using tab completion, as
in this example. Here, f is a figure. Type

set(f, 'pap

and press Tab. MATLAB displays

Select a property from the list. For example, type

u

and press Enter. MATLAB completes the property, including the closing
quote:

set(f, 'paperunits'

Continue adding to the statement, as in this example:

set(f, 'paperunits', 'c

and press Tab. MATLAB automatically completes the property

set(f, 'paperUnits', 'centimeters'

because centimeters is the only possible completion.

Tab Completion for MATLAB Objects
You can use tab completion with MATLAB objects to select from available
properties and methods.

3-32



Assistance While Entering Statements

For example, create a time series object, tsobj.

tsobj = timeseries

Then enter the object name followed by a period separator (.), such as

tsobj.

Press Tab. MATLAB displays a list of properties and methods for the object,
tsobj.

Viewing Function Syntax Hints While Entering a
Statement

• “What Are Function Hints?” on page 3-34

• “Basic Steps for Using Function Hints” on page 3-34

• “Interpreting Function Hints” on page 3-36

• “Getting More Information While Using Function Hints” on page 3-37

3-33



3 Running Functions — Command Window and History

• “Modifying Statements While Using Function Hints” on page 3-37

• “Closing the Pop-Up Window” on page 3-37

• “Enabling or Disabling Function Hints” on page 3-37

What Are Function Hints?
Function hints display allowable input arguments for a function while you
enter a statement in the Command Window or Editor. Function hints:

• Appear in a temporary pop-up window.

• Are useful when you only need a reminder of the syntax for a function.

• Provide a link to the reference page for more information.

• Are available for all functions provided with MathWorks products. The
syntax comes from the function reference page.

• Work for functions you create. The syntax comes from the function
definition statement (first executable line) in the MATLAB program file.
The file must be on the search path or in the current folder.

Function hints only display input argument syntax. They do not show output
argument syntax. To access output argument syntax while using the function
hints, click the More Help link to view the reference page.

Basic Steps for Using Function Hints
These steps illustrate using function hints in the Command Window for the
size function.

1 Type any output arguments and the equal sign. For example, type:

[m]=

2 Type the function name and the opening (left) parenthesis, and then pause.
For example, type:

size(

3-34



Assistance While Entering Statements

A yellow pop-up window appears, displaying the syntax options for the
function. In this example, the pop-up window indicates that you can enter
a single argument, X, or two arguments, X and dim.

3 Type a variable name for the first input argument. You can type a variable
for any argument that appears in bold in the pop-up.

Note Enter your variable names, and not the argument names shown in
the pop-up window.

In this example, for the input argument X, type your variable:

my_data

4 Enter more arguments:

a Type a comma after the argument you just entered.

The syntax options in the pop-up window change, based on the argument
you just entered.

3-35



3 Running Functions — Command Window and History

For this example, the pop-up window now shows only the X,dim option.
dim is bold now, because you can enter it.

b Type the next input argument. It can be any argument that is bold in
the pop-up.

For example, to run size for the third dimension, enter 3 for dim.

Continue entering more input arguments in the same way.

5 When you finish entering arguments, type the closing (right) parenthesis.

The pop-up window closes.

Interpreting Function Hints

• For an overloaded function name, the syntax for the method includes valid
objects of the method currently in the workspace.

• MATLAB cannot always determine the appropriate hints correctly. Some
allowable arguments may not appear, or could be in plain text when they
should be bold.

3-36



Assistance While Entering Statements

Getting More Information While Using Function Hints

• Click More Help in the pop-up window. MATLAB replaces the pop-up
window with a small help window containing the complete reference page
for a function. See also “Specifying Where Help from the Editor and
Function Browser Displays ” on page 4-32.

• Use function hints along with other methods for getting assistance,
including tab completion, the Function Browser, and Help on Selection.

Note When you click anywhere, or move the cursor away from the arguments
you are entering, the pop-up window automatically closes.

Modifying Statements While Using Function Hints
Modify your statement while the pop-up window is open, and the function
hints change based on your modifications. For example, delete a variable you
already typed and that argument appears in the pop-up window.

Closing the Pop-Up Window

• Click anywhere, or move the cursor away from the arguments you are
entering.

• Close the pop-up window by pressing Esc (escape).

• After closing the pop-up window, reopen it by clearing the arguments you
entered and clearing the left parenthesis. Then, enter the left parenthesis
and pause to redisplay the hints.

Enabling or Disabling Function Hints
To prevent function hints from appearing, or to show them if they are not
appearing, use keyboard preferences.

1 Select File > Preferences > Keyboard.

2 In Function hints, select the check boxes for the tools where you want
hints to appear. Clear the check boxes for the tools where you do not want
hints to appear.

3-37



3 Running Functions — Command Window and History

3 Click OK.

Getting Help for a Function Shown in the Command
Window or Editor
From the Command Window or Editor, display the complete reference page
for a function:

1 Right-click in a function name and select Help on Selection.

The reference page for the function opens in a small help window. The
following illustration shows help on selection for the corrcoef function
in the Command Window.

3-38



Assistance While Entering Statements

2 Close the small help window by pressing Esc (escape).

Customize the Help on Selection feature:

3-39



3 Running Functions — Command Window and History

• Specify a preference so that help on selection opens the reference page in
the Help browser instead of the small help window. To set the preference,
select File > Preferences > Help.

When help on selection opens the reference page in the Help browser, you
cannot toggle focus between the reference page and the Command Window
or Editor.

• Specify the products to look in. See “Specifying Which Documentation to
Display” on page 4-28

and “Help for Overloaded Functions” on page 4-10.

• Change the small help window font. To change the font, select
File > Preferences > Fonts > Custom. The small window uses the
HTML proportional text font.

Finding Functions Using the Function Browser

• “What Is the Function Browser?” on page 3-40

• “Basic Steps for Using the Function Browser” on page 3-41

• “Interpreting Search Results in the Function Browser” on page 3-45

• “Viewing the Full Reference Page from the Function Browser” on page 3-45

• “Repeating a Search” on page 3-46

• “Customizing the Function Browser” on page 3-46

What Is the Function Browser?

• Provides quick access to the syntax for a function and a description of the
syntax.

• Helps you find the names of functions.

• Works in the desktop.

The Function Browser looks for functions using the reference pages for
installed MathWorks products.

• You cannot use the Function Browser for blocks. Instead use the doc
function or the Help browser.

3-40



Assistance While Entering Statements

• You cannot use the Function Browser to find functions you created or that
other users provided. Instead, use “Finding Files and Folders” on page 7-27.

Basic Steps for Using the Function Browser

1 Open the Function Browser by selecting Help > Function Browser.

In the Command Window or Editor, another way to open it is by clicking
the Browse for functions button, . To show or hide the button, see
“Customizing the Function Browser” on page 3-46.

The Function Browser closes when you move the pointer outside of it. To
keep the Function Browser open, drag it by the top edge to a different
location.

After moving the Function Browser, access it by pressing Shift+F1. Close
it by pressing Esc.

2 Restrict the products the Function Browser looks in by using the Filter by
Product option in Help Preferences.

3-41



3 Running Functions — Command Window and History

To access the preference, click the product area at the bottom of the
Function Browser.

The following illustration shows the filter set to MATLAB and the Signal
Processing Toolbox only. The

�
�%��������%��!
����	%���

3 Find functions by browsing in the list of categories or by typing a search
term. You can switch between these two options at any point.

The following illustration shows how you browse for functions by expanding
categories of interest.

3-42



Assistance While Entering Statements

The following illustration shows results when you search, for example,
for filter.

3-43



3 Running Functions — Command Window and History

4 View more information about a function by moving the pointer over a
function. A brief description for each of the syntax options displays in a
yellow pop-up window.

The pop-up window automatically closes when you move your pointer to a
new item in the results list. To keep the pop-up window open, drag it by
the top edge to a different location.

5 Choose a function you want to use and perform any of the following:

• Add a function name after the cursor in the Command Window or Editor
by double-clicking the name in the Function Browser results list.

3-44



Assistance While Entering Statements

• Copy and paste the function name into any tool or application by
dragging the name from the Function Browser.

• Right-click the function name in the Function Browser to display other
options.

Interpreting Search Results in the Function Browser

Parentheses Indicate Location of Function. For results in products other
than MATLAB, the product folder appears in parentheses.

When more than one function in MATLAB has the same name, the folder for
the overloaded function appears in parentheses.

For example:

• filter is in MATLAB

• filter (signal) is in the Image Processing Toolbox™

• filter (timeseries) is in the timeseries folder in MATLAB

Highlights in Search Results. In the results, the search term is highlighted
in blue.

When a result does not include any blue highlighting, the matching term is
not part of the name, syntax, or brief description. The term is somewhere else
in the reference page.

Results for a Two-Letter Search Term. For faster performance, when you
type only two letters, the Function Browser looks only for exact matches.

Viewing the Full Reference Page from the Function Browser
View the complete reference page for a function in a small help window by
doing either of the following:

• From the Function Browser, right-click the function. From the context
menu, select Help on Function.

• From the Function Browser pop-up window, click More Help.

3-45



3 Running Functions — Command Window and History

To open the reference page in the Help browser instead of the small window,
set the preference in File > Preferences > Help.

Repeating a Search
As you type, the Function Browser displays a history of similar search terms
that you previously entered, just below the search field. To perform a search
again, select an item from the list and press Enter.

To view the entire search history for the current session, press the down arrow
key when the search field is empty. To close the history, press Esc (escape).

Customizing the Function Browser

• Show or hide the Browse for functions button in the Command Window
using Command Window preferences.

• Show or hide the Browse for functions button in the Editor using
Toolbars preferences for the Editor.

• Change the font used in the Function Browser by selecting
File > Preferences > Fonts, The Function Browser uses the desktop text
font. The pop-up window uses the HTML proportional text font.

See Also

• “Using the Code Analyzer Report” on page 10-22

• “Getting Help for Functions and Blocks” on page 4-8

• Chapter 4, “Getting Help and Product Information”

3-46



Controlling Output in the Command Window

Controlling Output in the Command Window

In this section...

“Echoing Execution” on page 3-47

“Suppressing Output” on page 3-47

“Paging of Output in the Command Window” on page 3-47

“Formatting and Spacing Numeric Output” on page 3-48

“Number of Characters in Command Window Display” on page 3-49

“Clearing the Command Window” on page 3-50

“Printing Command Window Contents” on page 3-50

“Keeping a Session Log” on page 3-51

Echoing Execution
Echoing command execution is useful for debugging or for demonstrations.
It enables you to view commands as they execute. To display each function
within a statement as it executes, type echo on in the Command Window.
For details, see the echo reference page.

Suppressing Output
If you end a statement with a semicolon ( ; ) and then press Enter or Return,
the MATLAB software runs the statement, but does not display any output.
This is particularly useful when you generate large matrices. For example,
running the following code creates A but does not show the resulting matrix in
the Command Window:

A = magic(100);

Paging of Output in the Command Window
Issue the more on command to control the paging of output in the Command
Window. This is useful, for example, if output in the Command Window
exceeds the visible portion of the window. You then have to scroll backward
to review all the output. By default, more is off.

3-47



3 Running Functions — Command Window and History

After you type more on, MATLAB displays only a page (a screen full) of
output, pauses, and displays

--more--

indicating there is more output to display. Press one of the following keys.

Key Action

Enter or Return To advance to the next line

Space Bar To advance to the next page

q To stop displaying the output

Formatting and Spacing Numeric Output
By default, numeric output in the Command Window is displayed as 5-digit
scaled, fixed-point values, called the short format. To change the numeric
format of output for the current and future sessions, set the Command
Window preference for text display. The text display format affects only how
numbers are shown, not how MATLAB computes or saves them.

Function Alternative
Use the format function to control the output format of the numeric values
displayed in the Command Window. The format you specify applies until you
change it or until the end of the session.

3-48



Controlling Output in the Command Window

Examples of Formats
Here are a few examples of the various formats and the output produced from
the following two-element vector x:

x = [4/3 1.2345e-6]

format short
1.3333 0.0000

format short e
1.3333e+000 1.2345e-006

format +
++

A complete list and description of available formats is in the reference page
for format. For more control over the output format, use the sprintf and
fprintf functions.

Controlling Spacing
To control spacing in the output, use the Command Window preference for
text display or the format function. Use

format compact

to suppress blank lines, allowing you to view more information in the
Command Window. To include the blank lines, which can help make output
more readable, use

format loose

Number of Characters in Command Window Display
The maximum line length for Command Window display is 25,000 characters.
If the output from a statement exceeds this limit, the Command Window
truncates the output and displays the following message at the end of the
line of output:

Output truncated. Text exceeds maximum line length of 25,000
characters for Command Window display.

3-49



3 Running Functions — Command Window and History

Clearing the Command Window
Clear the Command Window view without clearing the workspace by selecting
Edit > Clear Command Window.

Afterwards, unless you have changed the keyboard shortcut for it, you can use
the up arrow it to recall previous functions from the command history.

For more information, see:

• “Confirmation Dialogs Preferences” on page 2-132

• “Customizing Keyboard Shortcuts” on page 2-79

Function Alternative
Use clc to clear the Command Window. Or, use the home function to move
the prompt so that the screen is clear, but you can still scroll up to see the
Command Window contents.

Printing Command Window Contents
To print the contents of the Command Window, use one of the methods
described in the table that follows.

To Do This

Print the complete Command
Window contents.

Select File > Print.

Print a portion of the Command
Window contents.

Select the text you want to print, and
then select File > Print Selection.

Specify printing options for the
Command Window.

(For example, you can specify a
header.)

Select File > Page Setup. For more
information, see “Printing and Page
Setup Options for Desktop Tools” on
page 2-115.

3-50



Controlling Output in the Command Window

Keeping a Session Log

The diary Function
The diary function creates a copy of your session in MATLAB on a disk file,
including keyboard input and system responses, but excluding graphics.
You can view and edit the resulting text file using any text editor, such as
the MATLAB Editor. To create a file on your disk called sept23.out that
contains all the functions you enter, as well as output from MATLAB, type
the following:

diary('sept23.out')

To stop recording the session, type:

diary('off')

To view the file, type:

edit('sept23.out')

Other Session Logs
There are two other means of viewing session information:

• The Command History window contains a log of all functions executed
in the current and previous sessions—see “Using the Command History
Window” on page 3-66

• The logfile startup option—see “Startup Options” on page 1-14.

3-51



3 Running Functions — Command Window and History

Finding Text in the Command Window

In this section...

“Introduction” on page 3-52

“Finding Text Currently Displayed in the Command Window” on page 3-52

“Increasing the Amount of Information Available for Searching in the
Command Window” on page 3-53

“Using Incremental Search in the Command Window” on page 3-53

Introduction
You can search for specified text that appears in the Command Window,
where the text is either part of input you supplied, or output displayed by the
MATLAB software. After finding the text, you can copy and paste it to the
prompt in the Command Window to run it, or into a file.

Finding Text Currently Displayed in the Command
Window
To search for specified text currently displayed in the Command Window:

1 Select Edit > Find when the Command Window is active.

The Find dialog box opens.

2 Complete the dialog box, and then click Find Next or Find Previous.

3-52



Finding Text in the Command Window

The search begins at the current cursor position. MATLAB finds the text
you specified and highlights it.

3 Repeat step 2 to find another occurrence.

MATLAB beeps when a search for Find Next reaches the end of the
Command Window, or when a search for Find Previous reaches the top of
the Command Window. If you have Wrap around selected, it continues
searching after beeping.

To search for the specified text in other MATLAB desktop tools, change the
selection in the Look in field.

Increasing the Amount of Information Available for
Searching in the Command Window
To increase the amount of information displayed in the Command Window so
that more text is available for searching:

1 Select File > Preferences > Command Window, and then increase
the setting for the “Number of lines in command window scroll buffer”
on page 3-64.

2 Do not clear the Command Window.

In other words, do not enter clc or select Edit > Clear Command
Window.

Using Incremental Search in the Command Window
With the incremental search feature, the cursor moves to the next or previous
occurrence of the specified text in the Command Window. It is similar to the
Emacs search feature. The following sections provide details:

• “Example of Using Incremental Search” on page 3-54

• “Summary of Keyboard Shortcuts for Incremental Searches” on page 3-57

• “Case Sensitivity in Incremental Searches” on page 3-58

3-53



3 Running Functions — Command Window and History

Example of Using Incremental Search
You control incremental search using keyboard shortcuts. The following
example demonstrates how to use the incremental search feature in the
Command Window when:

• MATLAB is running on a Windows or UNIX system and the Active
settings field in the Keyboard Shortcuts Preference dialog box specifies
the Emacs Default Set.

• MATLAB is running on a Macintosh system and Active settings field in
the Keyboard Shortcuts Preference dialog box specifies the Macintosh
Default Set.

For details, see “Choosing a Set of Keyboard Shortcuts” on page 2-70.

1 Clear the Command Window to clear it of existing text and add this text:

qty = {15, 'Berlin'; 15, 'Boston'; 15, 'London'; ...
15, 'Melbourne'; 21, 'Berlin'; 21, 'Boston'; 21, 'London'; ...
21, 'Melbourne'; 22, 'Berlin'; 22, 'Berlin'; 22, 'Boston'; ...
22, 'Boston'; 22, 'London'; 22, 'London'; 22, 'Melbourne'; ...
22,'Melbourne';};

clc

qty

2 In the Command Window, position the cursor after the equal sign (=).

3 Begin an incremental search by pressing Ctrl+S.

An incremental search field appears at the bottom of the Command
Window with the text F incSearch. The F indicates a forward search.

3-54



Finding Text in the Command Window

�	����

�%�����

3�%�������

����%����
�

4 Begin a search for Boston by typing b.

The first occurrence of b highlights.

3-55



3 Running Functions — Command Window and History

If you mistype in the Inc Search field, use the Backspace key to remove
the previous letter or letters and make corrections.

5 Type the next letter of the text you want to find. Type o to specify the
next letter in Boston.

The Inc Search field contains bo, and the bo in Boston highlights.

6 To complete the highlighted word, press Ctrl+W.

3-56



Finding Text in the Command Window

Boston highlights and appears in the Inc Search field.

7 Find subsequent occurrences of the word by pressing Ctrl+S one or more
times.

If MATLAB beeps, it means either that the text was not found, or the
search wrapped past the bottom (or top) of the Command Window and is
continuing at the top (or bottom).

8 Find previous occurrences of the word by pressing Ctrl+R.

The incremental search field begins with R to indicate a backward (reverse)
search.

9 Search for a string that does not appear in the Command Window text
by typing x.

MATLAB beeps and Failing appears in the incremental search field.

10 Automatically remove characters back to the last successful search by
pressing Ctrl+G.

11 End incremental searching by pressing Esc (escape) or Enter.

The Inc Search field disappears. The cursor remains at the position where
the text was last found, with the search text highlighted.

Summary of Keyboard Shortcuts for Incremental Searches
The following table summarizes the keyboard shortcuts you can use for
performing incremental search actions. Except for the keyboard shortcuts
that initiate an incremental search, you cannot customize these shortcuts.
For information on choosing a keyboard shortcuts Active settings file, see
“Choosing a Set of Keyboard Shortcuts” on page 2-70.

Action Active Settings File Keyboard Shortcut

Initiate a forward
incremental search.

Windows Default
Set

Ctrl+Shift+S

Initiate a forward
incremental search.

Emacs Default
Set or Macintosh
Default Set

Ctrl+S

3-57



3 Running Functions — Command Window and History

Action Active Settings File Keyboard Shortcut

Initiate a backward
incremental search.

Windows Default
Set

Ctrl+Shift+R

Initiate a backward
incremental search.

Emacs Default
Set or Macintosh
Default Set

Ctrl+R

Complete a partially
highlighted string of
characters.

Any Ctrl+W

Find the next
occurrence of a string
of characters.

Any Ctrl+S

Remove characters
from the Inc Search
field, back to the last
successful search

Any Ctrl+G

End an incremental
search.

Any Esc (escape), or Enter, or
any other key that is not
a character or number

Case Sensitivity in Incremental Searches
When you enter lowercase letters in the Inc Search field, incremental search
looks for both lowercase and uppercase instances of the letters. For example,
if you enter b, incremental search looks for b and B. However, if you enter
uppercase letters, incremental search only looks for instances that match
the case you entered.

3-58



Finding Text in the Command Window

For example, suppose you enter bO in the Inc Search field when the
Command Window contains the text shown in the image that follows.
Incremental search finds the b in Berlin, but does not find any additional
matching text.

3-59



3 Running Functions — Command Window and History

Preferences for the Command Window

In this section...

“Text, Display, Accessibility, and Tab Size Preferences” on page 3-60

“Additional Settings That Affect the Command Window” on page 3-64

Text, Display, Accessibility, and Tab Size Preferences
To set preferences for the Command Window, select File > Preferences and
then select Command Window in the left pane of the Preferences dialog box.

3-60



Preferences for the Command Window

Text Display
Specify the format, that is, how output appears in the Command Window.

3-61



3 Running Functions — Command Window and History

Numeric format. Specify the output format of numeric values displayed in
the Command Window. This affects only how numbers are displayed, not how
the MATLAB software computes or saves them. The format reference page
includes the list of available formats, with examples.

Numeric display. Specify spacing of output in the Command Window. To
suppress blank lines, use compact. To display blank lines, use loose. For
more information, see the reference page for format.

Display

Wrap lines. Select to make a single line of input or output in the Command
Window break into multiple lines in order to fit within the current width of
the Command Window. This is useful for console mode. With this option
selected, an entire line is visible without scrolling, and the horizontal scroll
bar does not appear because it is not needed. With this option cleared, use the
horizontal scroll bar to view the entire contents of the line.

Set matrix display width to eighty columns. When selected, MATLAB
displays 80 characters of matrix output in a single row, and then continues
displaying output in a new row, regardless of the width of the Command
Window. Use the horizontal scroll bar if the width of the Command Window
is less than 80 characters.

With the check box cleared, a row of matrix output fills the width of the
Command Window, and then continues displaying output in a new row.
Note that if the Wrap lines preference is also selected, and the width of the
Command Window is less than 80 characters, each row of 80 characters of
matrix output wraps to fit within the width of the Command Window.

To determine the number of characters and lines that will display in the
Command Window, given its current size, use:

get(0,'CommandWindowSize')

When the matrix display width preference is not selected, the number of
characters for the width is based on the current width of the Command
Window. For example, a result of 50, 25 means 50 characters will display

3-62



Preferences for the Command Window

across the Command Window, and 25 lines will display. However, with the
preference selected, the result for that same size Command Window is 80, 25.

Show getting started message bar. The message bar in the Command
Window includes links to a video, demos, and information on getting started
with MATLAB. If you want to remove the message bar in the Command
Window, click the Close box in the right corner of the bar. If you close
the message bar, you can still access the documentation and demos it
linked to—for more information, see Chapter 4, “Getting Help and Product
Information”.

If you closed the message bar and want to show it again, select the Show
getting started message bar check box in the Command Window Display
preferences.

4��������������
������������

Show Function Browser button. The Function Browser button appears
to the left of the prompt in the Command Window. You use it to access the
Function Browser. If you do not want the button to appear because of the
space it requires, you can hide it by clearing the Show Function Browser
button check box. When the button is not shown, you can access the
Function Browser by pressing Shift+F1 or by right-clicking in the Command
Window and selecting Function Browser from the context menu. For more
information about the Function Browser, see “Finding Functions Using the
Function Browser” on page 3-40.

3-63



3 Running Functions — Command Window and History

Number of lines in command window scroll buffer. Set the number of
lines maintained in the Command Window, from 1,000 to 25,000. This is the
number of lines you can see when you scroll vertically. A larger buffer means
you can view more lines and it provides a larger base for search features,
but requires more memory.

This preference setting does not impact the number of lines you can recall
when you use the up arrow key in the Command Window (unless you have
changed the keyboard shortcut for the up arrow key). By default, you can use
the up arrow key, to recall all lines shown in the Command History window,
regardless of how many lines you can see in the Command Window.

Accessibility
Click the Keyboard Shortcuts link to assign keyboard shortcuts to the
Cursor Up and Cursor Down actions in the Command Window. These
actions enable you to move the cursor in the lines above the command line
prompt without using the mouse. For more information, see “Customizing
Keyboard Shortcuts” on page 2-79. For information about using Command
Window keyboard shortcuts and JAWS software, see “Command Output Not
Read” on page 2-166.

Tab key

Tab size. Number of spaces assigned to a tab stop when displaying output.
The default is four spaces, except on UNIX8 platforms where the default is
eight spaces. This does not apply when the tab completion preference is
selected.

Additional Settings That Affect the Command
Window
For information on additional preferences settings that affect the look and
behavior of the Command Window, see the following topics:

• “Setting Fonts Preferences for Desktop Tools” on page 2-141

8. UNIX is a registered trademark of The Open Group in the United States and other
countries.

3-64



Preferences for the Command Window

• “Confirmation Dialogs Preferences” on page 2-132

• “Setting Keyboard Preferences for Desktop Tools” on page 2-138

3-65



3 Running Functions — Command Window and History

Using the Command History Window

In this section...

“Overview of the Command History Window” on page 3-66

“Viewing Statements in the Command History Window” on page 3-68

“Performing Actions on Statements in the Command History Window” on
page 3-68

“Searching in the Command History Window” on page 3-70

“Printing the Command History Window” on page 3-76

“Deleting Entries from the Command History Window” on page 3-76

Overview of the Command History Window
The Command History window displays a log of the statements most recently
run in the Command Window. If you have an active Internet connection, you
can watch the Working in the Development Environment video demo for an
overview of the major functionality.

To show or hide the Command History window:

• Select Desktop > Command Window.

A check mark next to Command Window indicates it is displaying. No
check mark indicates it is hidden.

• Type commandhistory in the Command Window.

MATLAB opens the Command History window if it is closed, or selects it
if it is open.

3-66



Using the Command History Window

���������

�������

In addition, MATLAB provides other options for viewing a history of
statements, as described in the following sections:

• “Recalling Previous Lines in the Command Window” on page 3-21

• The diary function reference page

• “Startup Options” on page 1-14, which includes the logfile startup option

Command History File
When you recall lines in the Command History window and the Command
Window (as described in “Recalling Previous Lines in the Command Window”
on page 3-21), MATLAB uses the command history file, history.m.

The history file:

• Resides in the folder returned when you type prefdir in the Command
Window

• Loads when MATLAB starts

• Stores a maximum of 20,000 bytes

• Deletes the oldest entries, as needed, to maintain the maximum number
of bytes

Statements saved to the history are those that run in the Command Window.
This includes statements you run using the Evaluate Selection item on
context menus in tools such as the Editor, Command History, and Help

3-67



3 Running Functions — Command Window and History

browser. The history does not include every action taken in MATLAB,
however, For example, if you run the statement and then modify the value of
a in the Variable Editor, there is no record in the history that you modified
the value of a.

a = 1:10

MATLAB automatically saves the command history file throughout the
session according to the Saving preference you specified. You can choose to
automatically exclude certain statements from being written to the command
history file with the Settings preference. For details, see “Preferences for
Command History” on page 3-78.

Viewing Statements in the Command History
Window
The Command History window lists statements you ran in the current session
and in previous sessions. The time and date for each session appear at the top
of the history of statements for that session. The following table summarizes
the methods you can use to view statements in the Command History Window.

Action How to Perform the Action

Move through the
Command History
window.

Use the mouse to slide the scroll bar or press the
Up Arrow and Down Arrow keys.

Hide history for a
session.

Click or select a timestamp, and then press the
- key on the numeric keypad.

Show hidden history for
a session.

Click or select a timestamp, and then press the
+ key on the numeric keypad.

Performing Actions on Statements in the Command
History Window
You can select entries in the Command History window and then perform the
following actions for the selected entries.

3-68



Using the Command History Window

Action How to Perform the Action

Run statements in the
Command Window,

Do one of the following:

• Double-click an entry or entries in the Command History
window.

For example, double-click edit myfile to open myfile.m in the
Editor.

• Right-click an entry and select Evaluate Selection from the
context menu.

• Select an entry and press Enter or Return.

Edit and run statements
in the Command Window.

Do either of the following:

• Select an entry or entries, select Copy from the context menu,
and then paste the selection into the Command Window.

• Drag a selection to the Command Window. Then, in the
Command Window, edit the statements, and press Enter or
Return.

Copy statements to
another window.

Do either of the following:

• Select an entry or entries, and then select Copy from the context
menu. Paste the selection into an open file in the Editor or any
application.

• Drag the selection from the Command History window to an
open file or another application.

3-69



3 Running Functions — Command Window and History

Action How to Perform the Action

Create a file from a
statement or statements.

Select an entry or entries, and then right-click and select Create
Script from the context menu. The Editor opens a new file that
contains the statements you selected from the Command History
window.

Create a shortcut from a
statement or statements.

Do either of the following:

• Select an entry or entries, and then right-click and select Create
Shortcut from the context menu.

• Drag the selection to the Shortcuts toolbar. The Shortcut Editor
opens and the selected statements appear in the Callback field.

For more information, see “Running Frequently Used Statement
Groups with MATLAB Shortcuts” on page 2-57.

Searching in the Command History Window
There are two types of search in the Command History window:

• “Finding Next Entry By Letter” on page 3-70

• “Finding Text” on page 3-75

After finding an entry, you can copy and paste it into a file, or you can
right-click and select Evaluate Selection to run the entry.

Finding Next Entry By Letter
Type a letter in the Command History window. The Command History
window searches backwards to find the last previous entry that begins with
that letter as illustrated in this example:

1 Position the cursor at anywhere in the Command History window.

3-70



Using the Command History Window

2 Type the first letters of the entry you want to find. For example, type my.

The Command History window searches backwards and selects the
previous entry that begins with the letters you typed; in this example, you
typed my, and the Command History finds myfor.

As you begin typing a tooltip with the text: Search history for:, appears
at the top of the Command History window. This tooltip keeps track of
your search target as you type additional letters to narrow the focus of
your search.

If the search finds a matching entry in a session that is collapsed, it
expands the session and selects the entry.

3-71



3 Running Functions — Command Window and History

3�%�������
�����%���������������
���!�	��!������������
�
�������

3 Type an s to extend the search to mys. The Command History window
continues to search backwards, stopping next at the function mysurf.

3-72



Using the Command History Window

Finding Multiple Occurrences of the Entry. You can use the up and down
arrow keys to search for the next or the previous occurrence of the entry you
just found.

When you press Ctrl and the up or down arrow key, each occurrence of the
entry remains highlighted while you search for additional instances.

3-73



3 Running Functions — Command Window and History

To highlight all instances of the entry, press Ctrl+A. In the example below,
all instances of entries beginning with my are highlighted.

3-74



Using the Command History Window

Finding Text
Select Find from the Edit menu to search for specified text using the Find
dialog box. Complete the dialog box. The search begins at the current cursor
position. MATLAB finds the text you specified and highlights it. Click Find
Next or Find Previous to find another occurrence. Find looks for visible
entries only, that is, it does not find entries in collapsed nodes.

3-75



3 Running Functions — Command Window and History

MATLAB beeps when a search for Find Next reaches the end of the
Command History window, or when a search for Find Previous reaches
the top of the Command History window. If you select Wrap around, the
search continues after the beep.

To search for the specified text in other MATLAB desktop tools, change the
selection in the Look in field.

Printing the Command History Window
To print the contents of the Command History window, select File > Print
or Print Selection. Specify options for printing by selecting File > Page
Setup. For example, you can print the history with a header. For more
information, see “Printing and Page Setup Options for Desktop Tools” on
page 2-115.

The printed version is sized to fit the page. If there is a long statement in
the Command History, the reduced page size might be difficult to read. As
a workaround, either use Print Selection, where the long statement is not
part of the selection, or remove any extremely long statements from the
Command History before printing it.

Deleting Entries from the Command History Window
Delete entries from the Command History window when you think there are
too many and it becomes inconvenient to find the ones you want. All entries
remain until you delete them, or until the command history file exceeds its
maximum size, at which point MATLAB automatically deletes the oldest
entries. For more information, see “Viewing Statements in the Command
History Window” on page 3-68.

After deleting entries from the Command History window, you cannot recall
those statements in the Command Window (as described in “Recalling
Previous Lines in the Command Window” on page 3-21).

To delete specific entries in the Command History window:

1 Select the entries to delete, using one of these methods:

• Select a single entry.

3-76



Using the Command History Window

• Shift+click or Ctrl+click to select multiple entries.

• Select the timestamp for a session to select all entries for that session.
Then use Shift+click or Ctrl+click to select multiple timestamps with
all their entries.

2 Right-click and select Delete Selection from the context menu, or press
the Delete key.

A confirmation dialog box might appear; for more information, see
“Confirmation Dialogs Preferences” on page 2-132.

To delete all entries in the Command History window, do one of the following:

• Select Edit > Clear Command History.

• Select Clear Command History from the context menu.

3-77



3 Running Functions — Command Window and History

Preferences for Command History

In this section...

“Overview of Command History Preferences” on page 3-78

“Settings” on page 3-78

“Saving” on page 3-79

“See Also” on page 3-80

Overview of Command History Preferences
Using Command History preferences, you can choose to exclude statements
from the command history file, history.m, and specify how often to save it.
The command history file is used for both the Command History window and
statement recall in the Command Window.

To set preferences for the command history file, select
File > Preferences > Command History.

Tip For information on changing the date format in the Command History
window, see “Customizing the Column Display” on page 7-19. Change the
date format in the Command History using the method described for changing
the date format in Date Modified column of the Current Folder browser.

Settings
Specify the types of statements to exclude from the command history file.
Note that when you exclude statements from the command history file, you
cannot recall them in the Command Window as described in “Recalling
Previous Lines in the Command Window” on page 3-21, nor can you view
them in the Command History window.

Save Exit/Quit Commands
Select the check box to save exit and quit commands in the command
history file.

3-78



Preferences for Command History

Save Consecutive Duplicate Commands
Select the check box if you want consecutive executions of the same statement
to be saved to the command history file.

For example, with this option selected, run magic(5), and then run magic(5)
again. The command history file saves two consecutive entries for magic(5).
With this option cleared, for the same example, the command history file
saves only one entry for magic(5). If you then run magic(10), the command
history file saves both entries, magic(5) followed by magic(10).

Saving
Use Saving preferences to specify how often to automatically save the
command history file during a session of running the MATLAB software. By
default, MATLAB saves the history after every statement. This allows you
to more easily recover your state in the event of an abnormal termination,
because you can reconstruct it using the history.

Save History File On Quit
Select this option to save the command history file when you end the session
of MATLAB. If the session does not end via a normal termination, that is, via
the exit or quit functions, File > Exit MATLAB, or the MATLAB desktop
Close box, the history file is not saved for that session.

Save After n Commands
Select this option to save the command history file after n statements are
added to the file. For example, when you select the option and set n to 10,
after every 10 statements are added, the history file is automatically saved.
Use this option instead of Save History File on Quit if you do not want to
risk losing entries to the saved history because of an abnormal termination,
such as a power failure.

Don’t Save History File
Select this option if you do not want to save the command history file. This
feature is useful when multiple users share the same machine and do not
want other users to view the statements they have run.

3-79



3 Running Functions — Command Window and History

Note that any entries already in the history.m file remain. Before setting
this preference, you might want to remove any existing entries. Follow the
instructions in “Deleting Entries from the Command History Window” on
page 3-76.

See Also

• “Using the Command History Window” on page 3-66

• Additional preferences that relate to the Command History:

- “Setting Fonts Preferences for Desktop Tools” on page 2-141

- “Confirmation Dialogs Preferences” on page 2-132

3-80



4

Getting Help and Product
Information

• “Overview of Help” on page 4-2

• “Using the Help Browser” on page 4-4

• “Searching the Documentation” on page 4-14

• “Learning from Demos” on page 4-25

• “Configuring the Help Browser” on page 4-28

• “Using Printed Documentation” on page 4-35

• “Additional Help and Learning Resources” on page 4-37



4 Getting Help and Product Information

Overview of Help
You can get help using MATLAB and other MathWorks products in a number
of ways, depending on your needs. For example:

• To get quick help for a function in the Command Window, use the help
function or the Function Browser .

• To browse all HTML documentation and demos, use the Help browser
Contents pane.

• To search all HTML documentation and demos, use the Help browser
search field.

• To get context-sensitive help, use the Help button that certain graphical
user interfaces (such as Preferences and Set Path) provide.

The Help browser is the main conduit for all product documentation. It
provides access to the following types of documentation for every product
you have installed:

General Release Notes High level descriptions of updates to all
MathWorks products

Getting Started guides Overview introductions to using a product

User Guides Comprehensive descriptions of the capabilities
and ways of using a product, including many
examples and links to related information

Reference pages Complete descriptions of functions and blocks,
including syntax, limitations, examples and
links to related features

Examples you can run Code you can select and execute that illustrate
product capabilities and programming
techniques

Demos Standalone executable examples, often with
explanatory text

Product Release Notes Descriptions of what’s new for each product
in a release, with links to user guides and
compatibility considerations

4-2



Overview of Help

Printed documentation Links to complete sets of user guides, release
notes, and reference documentation in Adobe®

Portable Document Format (PDF) files on the
MathWorks Web site

Information on the
MathWorks Web site

Links to supplemental demos, MATLAB
Central, Technical Support, and information
on platforms requirements, books, and
learning opportunities

You can access everything the Help browser provides except for executable
examples on the MathWorks Web site.

For more information, see “Getting Help” in the MATLAB Getting Started
guide.

In addition to getting help and using demos, you can add your own help
and demos for MATLAB programs you create. For more information, see
“Providing Your Own Help and Demos” on page 5-8.

4-3

http://www.mathworks.com/support/


4 Getting Help and Product Information

Using the Help Browser

In this section...

“About the Help Browser” on page 4-4

“Getting Help for Functions and Blocks” on page 4-8

“Accessing a Specific Page” on page 4-12

“See Also” on page 4-13

About the Help Browser

• “Opening the Help Browser” on page 4-6

• “Using the Help Navigator” on page 4-7

The Help browser contains two panes. On the right is the viewing pane, where
you read documentation. The pane on the left is the help navigator, where
you browse tables on contents and results from searching the documentation.
The following illustration shows how the Help browser looks when you first
open it (in the case that only MATLAB is installed).

4-4



Using the Help Browser

The home page for each product is called a roadmap. Click on any product in
the help navigator to display its roadmap. Click the underlined blue links on
the roadmap to display documentation for that product in the viewing pane.
Clicking a link with an orange triangle next to it expands the roadmap to
reveal additional links.

The Help browser has buttons and other controls beneath its menu bar for
you to:

4-5



4 Getting Help and Product Information

• Search all documentation for words, phrases, or Boolean expressions that

you type in the search field .

• Navigate backward and forward through pages you have viewed

• Find text on a page, print a page, execute examples, and navigate using
the Actions drop-down menu

• Backtrack using the navigation bar

Opening the Help Browser
When you start MATLAB, the Help browser is closed. You can open the Help
browser in different ways:

• Click Help > Product Help from the Desktop menu bar or from any
desktop component

• Type doc or doc function_name in the Command Window

• Type docsearch followed by one or more search terms in the Command
Window

4-6



Using the Help Browser

You can dock the Help browser in your desktop, like other desktop
components. If you do not need the Help browser to remain open, you can close
or minimize it at any time. If you close and reopen the Help browser, it always
opens displaying the roadmap for MATLAB, not the last page you viewed.

Using the Help Navigator
The help navigator occupies the left pane of the Help browser. When you click
a product name, icon, or the + (plus sign) beside it, the item expands into a
table of contents. Each subsection expands to show lower-level topics, as the
following illustration shows.

The help navigator has these main components:

4-7



4 Getting Help and Product Information

• The contents pane, which displays a table of contents when you click the

Contents tab

• The search field , where you type text you want
to find in the documentation

• The Search Results tab , which displays the results of your
most recent search in the contents pane.

To enlarge the area of the viewing pane, you can hide the help navigator by
clicking the up arrows to the right of the search field. The up arrows then
become down arrows that you click to display the help navigator again.

Getting Help for Functions and Blocks

• “Help for Functions and Blocks” on page 4-8

• “Help for Overloaded Functions” on page 4-10

Help for Functions and Blocks
As you work with MathWorks products, you might need help for a function or
block. You can use different ways to get help, depending on the tool you are
using when you need the help and your preference.

When
You Are
Using...

How to Get Help For More Information

Any
desktop
tool

Select Help > Function
Browser.

“Finding Functions Using the
Function Browser” on page
3-40

Help
browser
Contents
pane

1 Expand the listing for a
product.

2 Expand the Functions or
Blocks entry to view all
functions or blocks in the
product.

“Browsing for Documentation
and Demos”

4-8



Using the Help Browser

When
You Are
Using...

How to Get Help For More Information

3 Select a function or block to
view its reference page.

.

Help
browser
search

1 Search for a function or
block name.

2 Sort results by type, and
then view results for the
Reference type.

3 Select a function or block to
view its reference page.

“Searching for Documentation
and Demos”

Page
displayed
in the
Help
browser

When a function name is a
link, click the link to view
the reference page for the
function.

When a function name is not
a link:

1 Select a function name on
the page.

2 Right-click, and do one of
the following:

• Display the reference
page for the selected
function in the Help
browser, by selecting
Help on Selection.

None

4-9



4 Getting Help and Product Information

When
You Are
Using...

How to Get Help For More Information

• Open the function file in
the Editor, by selecting
Open Selection.

Current
Folder
browser

• View a brief description for
a file in the details pane.

• View the reference page
in the Help browser by
right-clicking the file and
select View Help.

• “Viewing File Descriptions”
on page 7-20

• “Viewing Help for a
MATLAB Program File” on
page 7-24

Command
Window
or Editor

Right-click on the function
name and select Help on
Selection.

“Getting Help for a Function
Shown in the Command
Window or Editor” on page
3-38

Command
Window • To display a reference page,

run doc name.

• To display brief help in the
Command Window, run
help name.

• doc

• help

Help for Overloaded Functions
When there is more than one function with the same name (called an
overloaded function), typing help in the MATLAB Command Window for that
function lists all the overloaded functions at the end of the help text. For
example, the help text for the loglog plotting function is:

help loglog

LOGLOG Log-log scale plot.
LOGLOG(...) is the same as PLOT(...), except logarithmic
scales are used for both the X- and Y- axes.

See also plot, semilogx, semilogy.

4-10



Using the Help Browser

Overloaded methods:
distributed/loglog
rfckt.loglog
frd/loglog

Reference page in Help browser
doc loglog

All of the function names are links. The See also and Overloaded methods
items display Command Window help when you click them. The Reference
page in Help browser link displays documentation in the Help browser.

When you click the doc loglog link, the reference page opens in the Help
browser and the overloaded methods display as links in an information bar at
the top of the page, as shown here.

4-11



4 Getting Help and Product Information

Another way to view a reference page is to select the name of a function
in the Command Window or in the Editor, right-click, and select Help on
Selection. Or, you can select the name and press F1, (This is the default hot
key for Help on Selection. You can change the hot key by modifying your
Preference for that keyboard shortcut.)

Accessing a Specific Page

• “Bookmarking Favorite Pages” on page 4-12

• “Getting the Link to a Page” on page 4-12

Bookmarking Favorite Pages
You can bookmark your favorite pages in the documentation and your favorite
demos. In MATLAB, bookmarks are called favorites.

Use the Favorites menu to add, go to, and organize favorites

MATLAB saves favorite shortcuts, with special values for the callback and
category that makes the shortcut go to a page in the Help browser. Therefore,
when you save a favorite, do not change the Callback or Category.

Note You cannot migrate favorites saved in one MATLAB release to a new
release.

Getting the Link to a Page
To tell someone else about a specific page in the documentation, you can
send them a link to the page.

To get the link for a page (URL) shown in the Help browser:

1 With the page displayed in the Help browser, select View > Page
Location. The Help Page Location dialog box opens.

4-12



Using the Help Browser

2 Copy the link from one of the fields:

• If the link is for someone with the same release of MATLAB, use the
link to the Help browser.

• If the link is for someone with a different release of MATLAB, or who
does not have the product, use the link to the Web site. To view the
page on the Web site, click Go. For more information, see “Product
Documentation at the MathWorks Web Site” on page 4-39.

See Also

• “Getting Help for Files Created by Others” on page 5-2

• “Providing Your Own Help and Demos” on page 5-8

• “Product Documentation at the MathWorks Web Site” on page 4-39

• doc function to go directly to a reference page or roadmap page

• demo function to go directly to a demo page

• docsearch function to go directly the first search result for the search
term you specify

4-13



4 Getting Help and Product Information

Searching the Documentation

In this section...

“Performing a Simple Search” on page 4-14

“Improving Search Results” on page 4-14

“Advanced Search Techniques” on page 4-20

“Searching Within a Page” on page 4-23

Performing a Simple Search
To search documentation and demos for keywords:

1 Enter one or more keywords in the search field in the Help browser. All
words must exist on a page for it to qualify as a search result. To search
for an exact phrase, enclose it in double quotation marks, for example,
“help report”.

2 Press Enter.

A listing of pages containing your search terms appears in the Search
Results pane of the Help Navigator. When you select one of the results by
clicking it, your search terms are highlighted in color in the viewing pane,
each word or phrase in a distinct color.

Note The search engine ignores capitalization and punctuation.

For additional information about performing a basic search, see “Searching
for Documentation and Demos” in the MATLAB Getting Started Guide.

Improving Search Results

• “Too Many Search Results?” on page 4-15

• “Too Few Search Results?” on page 4-15

• “Using Search Hints” on page 4-15

4-14



Searching the Documentation

• “Using Search History” on page 4-17

• “Additional Guidelines for Searching” on page 4-20

Too Many Search Results?
To reduce the number of search results in the Help browser, try:

• “Limiting Search to Certain Products” on page 4-22

• Adding words in the search field

• “Searching for an Exact Phrase” on page 4-20

• “Excluding Results That Contain Specified Words — Boolean NOT” on
page 4-22

Too Few Search Results?
To increase the number of search results in the Help browser, try:

• Searching in more products. See “Limiting Search to Certain Products”
on page 4-22.

• “Searching for Part of a Word — Using Wildcards” on page 4-21.

• Removing search words. All search terms must exist on a page for that
page to appear as a result. Terms that you deliberately exclude using NOT
are excluded.

• Not searching for exact phrases. Slightly different expressions might exist
than those you seek.

• “Finding Any of the Words — Boolean OR” on page 4-22.

• Looking in bug reports, solutions, and technical notes at the MathWorks
Web site. Click Search Online Support at the bottom of Search Results
pane.

See also “Additional Help and Learning Resources” on page 4-37.

Using Search Hints
When you type in the search field, a menu of search hints labeled Suggested
Searches appears beneath the field, as shown in the following illustration.

4-15



4 Getting Help and Product Information

The Help browser bases hints on what you have typed so far and orders them
by relevance. The list changes as you continue to type. If you see a suggested
search phrase that you want to use, do either of the following:

• Select a suggestion in the drop-down menu with the mouse pointer and
click to choose the selected item.

• Press Down Arrow key to navigate to the item (or Up Arrow to move
back up the list). Press Enter to choose the selected item.

After you make one or more searches, the drop-down menu includes a section
at its top labeled Recent Searches, as shown in the following illustration.

4-16



Searching the Documentation

Choose one of the Recent Searches items to repeat a search.

Using Search History
When you type words and phrases in the search field, MATLAB remembers
them by maintaining a search history, like it does for commands you type
in the Command Window. Your search history persists between MATLAB
sessions, as well. To use a search term you have used before without retyping
it, click the down arrow to the right of the search field and select Show
Search History, as the following illustration shows.

4-17



4 Getting Help and Product Information

Click the search field and press the down-arrow key to reveal your search
history. The history drops down below the search field. Select an item from it
or type a new search term in the search field and press Enter.

4-18



Searching the Documentation

Narrow the list of search terms by starting to type a word. The list shortens
to include only those terms that begin with the letters you type.

4-19



4 Getting Help and Product Information

Additional Guidelines for Searching
If the Help browser does not find what you want, try changing your search
criteria based on how search works:

• Search ignores common, insignificant words, such as a, an, the, and of,
unless they are part of an exact phrase. Note that search interprets each
asterisk (*) in a search term as a wildcard character.

• Search is case insensitive.

• Search finds letters and digits, but not symbols such as punctuation marks,
plus, minus, and so forth. See “Searching for Special Characters and
Symbols” on page 4-23.

• Search looks in the following places:

- Documentation — Text and code shown in the Help browser

- Product demos — Comments and code in program files and models

- GUI-based demos — Help comments in the program file

- Video demos — The title

Advanced Search Techniques

• “Searching for an Exact Phrase” on page 4-20

• “Searching for Part of a Word — Using Wildcards” on page 4-21

• “Limiting Search to Certain Products” on page 4-22

• “Finding Any of the Words — Boolean OR” on page 4-22

• “Excluding Results That Contain Specified Words — Boolean NOT” on
page 4-22

• “Using Multiple Boolean Operators” on page 4-23

• “Searching for Special Characters and Symbols” on page 4-23

Searching for an Exact Phrase
To reduce the number of irrelevant results the Help browser finds, specify
an exact phrase by enclosing the words in quotation marks. Search accepts
more than one exact phrase.

4-20



Searching the Documentation

For example:

• Find sections that contain plot tools, in that sequence, with no words
between them:

"plot tools"

• Find sections that contain both "plot tools" and "figure palette":

"plot tools" "figure palette"

Searching for Part of a Word — Using Wildcards
The Help browser searches for each entire search word you specify. For
example, if you search for plo, you are unlikely to find pages containing plot.
To search for part of a word in the Help browser, use the wildcard character
(*) in place of characters in a search word. Search accepts more than one
wildcard character.

For example:

• Find plot, plot3, plotted, plots, or plotting:

plot*

• Find plot tools or plotting tool:

plot* tool*

When you use wildcards, the Help browser normally returns more results
than it does without wildcards. Add search terms or preface a term with the
Boolean operator NOT to limit results.

Restrictions When Using Wildcards.

• You must use two or more characters with a wildcard. For example, p* fails.

• You cannot use wildcards within an exact phrase. For example, "plot*
tool" fails.

• Do not begin a search word with a wildcard character. For example, *tool
fails.

4-21



4 Getting Help and Product Information

Limiting Search to Certain Products
By default, the Help browser searches in the documentation and demos for
all installed products.

To specify which products to search, use the product filter. See “Specifying
Which Documentation to Display” on page 4-28.

After performing a search, to organize results by product, click the Product
column header.

To search in the documentation for products that are not installed, search
the documentation on the MathWorks Web site. For more information, see
“Product Documentation at the MathWorks Web Site” on page 4-39.

Finding Any of the Words — Boolean OR
For more search results in the Help browser, look for sections that contain
any of the search words by including OR between words:

• Include a space before and after OR

• Use all capital letters for OR.

For example, find sections that contain plot or graph:

plot OR graph

Excluding Results That Contain Specified Words — Boolean
NOT
To find sections that contain specified search words, but do not contain other
specified words, include NOT before the words to exclude. Using NOT reduces
irrelevant search results in the Help browser.

For example, find sections that contain "plot tools", but do not contain
"time series":

"plot tools" NOT "time series"

4-22



Searching the Documentation

Using Multiple Boolean Operators
The Help browser search evaluates NOT operators first, OR operators second,
and AND operators last.

By default, search looks for pages that contain all the search words, which is
called a Boolean AND. If there is no Boolean operator before a word, search
assumes that there is an AND before it.

When you construct a search with multiple operators, including AND before a
word helps you understand the search.

For example, find pages that contain either plotting tool or plot tools
and contain workspace, but do not contain time series:

"plotting tool" OR "plot tools" NOT "time series" AND workspace

Searching for Special Characters and Symbols
To find a symbol or special character using the Help browser, look for the
word instead of the symbol or character.

For example, look for plus instead of +.

Other ways to find information about special characters and symbols are:

• Checking the Operators and Special Characters category in the MATLAB
Function Reference

• Searching in the PDF documentation, which supports searching for special
characters and symbols. For details, see “Accessing and Printing PDF
Documentation” on page 4-35.

Searching Within a Page

Using Highlighted Search Words
When viewing a page from the Help browser search results, scroll through the
page to view the search words, which appear with highlights.

The highlighting clears when you go to another section by clicking a link
or using the navigation bar.

4-23



4 Getting Help and Product Information

To clear the highlights while viewing the page, right-click on the page and
select Refresh

To restore the highlights after clearing them, go to a different page. Then,
select the search result again.

Using the Find Tool
To locate search words or any word on a page in the Help browser, select
Edit > Find and use the Find dialog box. To go to the next instance on the
page, use the keyboard shortcut, F3. Use Shift+F3 to go to the previous
instance. The find tool looks for partial words. For example, plot finds
plot and plotting. You can change these and other keyboard shortcuts
by selecting File > Preferences and customizing key assignments in the
Keyboard Shortcuts pane.

4-24



Learning from Demos

Learning from Demos

In this section...

“About Demos” on page 4-25

“Types of Demos” on page 4-25

“Accessing Demos” on page 4-26

“Running Demos” on page 4-26

About Demos
MATLAB provides demonstrations of product features so you can see how the
features work. Some of the demos include executable code.

Note Related to demos are examples in the documentation. Examples
generally contain code that you can execute and adapt.

To view the demos that are available, as well as documentation examples, use
the Help browser. For more information, see “Browsing for Documentation
and Demos” in the MATLAB Getting Started Guide.

You can run the code in the demos and executable documentation examples.
You can also use the code in your work. For more information, see “Running
Demos and Code in Examples” in the MATLAB Getting Started Guide.

Types of Demos

Icon Type Description Example

Script Script file demos:
• Tell a story using source
code, commentary, and
output.

• Are created by publishing a
code script to HTML output
using the Editor.

• Can run without stopping,
or cell-by-cell. A cell is a
section of code that begins
with two comment symbols
(%%).

In the Help browser Contents pane, select
MATLAB > Demos > Graphics > Square
Wave from Sine Waves.

GUI Standalone tool for exploring
a feature.

In the Help browser Contents pane, select
MATLAB > Demos > Graphics > Vibrating
Logo.

4-25



4 Getting Help and Product Information

Icon Type Description Example

Model Simulink block diagram. In the Help browser Contents pane, select
Simulink > Demos > Automotive
Applications > Engine Timing
Simulation.

Video Video demos:
• Are movies that highlight
key features.

• Play in your system Web
browser using the Adobe
Flash Player plug-in.

• Could require an Internet
connection.

In the Help browser Contents pane,
select MATLAB > Demos > Getting
Started > Importing Data from Files.

Accessing Demos
Demos are available in the Help browser:

• Browse for demos in a product using the Help browser Contents pane. For
more information, see “Browsing for Documentation and Demos”.

• Search for a topic of interest in the Help browser. Sort results by type,
and then select a result from the Demos type. For more information, see
“Searching for Documentation and Demos”.

• Use the demo function.

Running Demos
To run a MATLAB code demo from start to finish, see “Running a Script
Demo”.

To run a MATLAB code demo section-by-section:

1 Display the demo in the Help browser.

2 On the demo page, click Open filename in the Editor.

3 In the Editor, select Cell > Evaluate Current Cell and Advance.

4-26



Learning from Demos

To run a MATLAB code demo in the Command Window:

1 Click Run in the Command Window.

2 Scroll up in the Command Window to see the start of the instructions.

3 Follow the instructions.

4-27



4 Getting Help and Product Information

Configuring the Help Browser

In this section...

“Adjusting the Help Browser Layout” on page 4-28

“Specifying Which Documentation to Display” on page 4-28

“Accessing English Documentation on Japanese Systems” on page 4-29

“Customizing Help Browser Fonts and Colors” on page 4-30

“Preferences for Configuring Help Windows, Search History, and PDF
Readers” on page 4-32

Adjusting the Help Browser Layout
By default the Help browser opens with the Help Navigator pane (the
Contents and Search Results) on the left and the viewing pane on the
right. If you make the Help browser window narrow, the Help Navigator
pane moves above the viewing pane. This layout provides more space for
displaying pages. Use this configuration when you want to reference the
Help browser while working with a tool, for example, the Editor or figure
windows. The Help browser uses a top-bottom layout when you dock it next to
another tool in the desktop.

To provide more space for viewing a page in the Help browser, click the up
arrows , located to the right of the search field. The Help Navigator pane
closes.

To reopen the pane, click the down arrows that now display in the same
location.

Specifying Which Documentation to Display
By default, the Help browser and Function Browser show the documentation
and demos for all installed MathWorks products. However, you can hide the
documentation for any product If you have products you tend not to use or you
want to locate relevant information more quickly. To specify the products that
the Help browser and Function Browser display:

1 Select File > Preferences > Help.

4-28



Configuring the Help Browser

2 Under Filter by Product, select the Selected products radio button.

3 From the list of installed products, select the products you want the Help
browser to include.

4 Click OK.

Note The Release Notes Help Preferences entry refers to the general
Release Notes overview document for all products in a release. It does
not apply to the product-specific release notes, which are part of the
documentation for a product.

Accessing English Documentation on Japanese
Systems
Many MathWorks products provide documentation translated into Japanese.
The translated documentation is usually one release behind the product.
However, the Help browser can also access the English documentation for
the release you are using. To read documentation for the current version in
English, use the Language panel in the Help Preferences dialog to switch
from Japanese to English. You can toggle the preference setting, enabling you
to revert to Japanese at any time. The option changes the language used in
the Help browser and for GUI context-sensitive help, but it does not affect the
language appearing in menus or elsewhere in products. For example, the
help command still provides help in Japanese, even after you switch the Help
browser to English. For more information, see “Obtaining Documentation in
Different Languages” on page 4-39.

Note The Language preference is available only when the system locale is
Japanese and the Japanese documentation is installed. If the documentation
for a product is not translated, the Help browser displays the English
documentation for it no matter how you set the preference.

4-29



4 Getting Help and Product Information

Customizing Help Browser Fonts and Colors
You set font characteristics and colors for the Help browser as you do for other
desktop tools, with some exceptions. Some settings apply to text, others to
code, and font styles apply only in the Help Navigator.

Specifying the Font Name, Style, and Size
You specify fonts for the Help browser Contents and Search Results panes
separately from the fonts for the display pane.

By default, the pane for Contents and Search Results uses the desktop text
font. You can change the font family, style (bold or italic), and size.

The font for Help browser display pane is specified by the HTML
Proportional Text setting in the MATLAB Fonts Custom Preferences dialog
box. By default, HTML Proportional Text tools use a custom font (Sans Serif,
10 pt.). You can change these settings, but not all changes you make affect
the display pane in the Help browser:

• Changing the font size applies to all text and code in the display pane.

• Changing the font family applies to text, but not code in the display pane.

• Changing the font style to bold or italic does not apply to the display pane.

For related information, see “Setting Fonts Preferences for Desktop Tools” on
page 2-141.

Example — Specifying Fonts for the Help Browser. Specify Microsoft
Comic Sans® MS, italic, 14 pt. font for the Help browser display pane:

1 Select File > Preferences > Fonts > Custom.

2 From the Desktop tools list, select HTML Proportional Text.

3 For Font to Use, select Custom, and specify the characteristics:

• Family — Comic Sans MS

• Size in points — 14

• Style — bold

4-30



Configuring the Help Browser

4 Click Apply or OK.

The font for the page display pane uses the new settings. The font in other
HTML Proportional Text tools, like the MATLAB Web browser also uses
the new settings.

The change to the bold style has no effect.

Code on the page does not use the HTML Proportional Text font. The change
to Comic Sans MS does not affect it.

4-31



4 Getting Help and Product Information

Specifying Text and Background Colors
Specify the background and text color used in the pane for Contents and
Search Results the same way you do for other desktop tools. See “Setting
Colors Preferences” on page 2-150.

Note You cannot specify text, background, or hyperlink colors for the Help
browser display pane.

Preferences for Configuring Help Windows, Search
History, and PDF Readers

• “Specifying Where Help from the Editor and Function Browser Displays ”
on page 4-32

• “Specifying a Search History Limit” on page 4-33

• “Specifying the PDF Reader Location — UNIX Platforms Only” on page 4-33

Specifying Where Help from the Editor and Function Browser
Displays
By default, MATLAB displays the reference page in a small window when you:

• Get help on a selection from the Command Window or Editor.

• Click More Help from the Function Browser or function hints pop-up
windows.

To display the reference page in the Help browser:

1 Select File > Preferences > Help.

2 For Help on Selection and More Help, select In Help browser.

This preference does not apply when you get help for a selected function from
the Current Folder browser or Help browser. Then, the reference page opens
in the Help browser.

4-32



Configuring the Help Browser

Specifying a Search History Limit
Your search history is a list of terms that you have used when searching
in the Help browser. MATLAB maintains this list for your current and
previous sessions. By default, your 500 most recently used terms are
available to you via a drop-down list under the Help Navigator search field.
To change the limit for the number of items in your search history , go to
File > Preferences > Help and, in the Number of most recent search
terms to save field, enter or select the number you want . You can erase your
entire search history by clicking the Clear History button. The following
illustration shows these controls.

For more information about search history, see “Using Search History” on
page 4-17.

Specifying the PDF Reader Location — UNIX Platforms Only
To display the PDF version of the documentation, the Help browser needs to
locate the PDF reader on your system. For example, the Adobe® Acrobat®

product is a PDF reader that many people use on a variety of platforms.

On Microsoft Windows and Apple Macintosh platforms, MATLAB obtains the
PDF reader location from the operating system.

On UNIX platforms, the default PDF reader is Acrobat® and MATLAB
automatically determines its location, if it exists. To use a different PDF
reader:

1 Select File > Preferences > Help.

2 For PDF reader, enter the full path to the application.

3 Click OK.

4-33



4 Getting Help and Product Information

Note The PDF reader preference is only for UNIX platforms. It does not
appear in the Help Preferences pane for other platforms.

For related information, see “Accessing and Printing PDF Documentation”
on page 4-35.

4-34



Using Printed Documentation

Using Printed Documentation

In this section...

“Printing from the Help Browser” on page 4-35

“Accessing and Printing PDF Documentation” on page 4-35

“Obtaining Printed Manuals” on page 4-36

Printing from the Help Browser

1 In the Help browser, display the page you want to print.

2 Select File > Print.

3 A system print dialog opens for you to select a printer and set properties
for the print job.

Accessing and Printing PDF Documentation
Most of the documentation you access from the Help browser is available in
PDF format. Use PDF documentation to print:

• Tables of contents

• Multiple pages of documentation

• Pages using a book style format rather than a Web style format

Accessing the PDF documentation from the Help browser requires:

• A PDF reader, for example, Adobe Acrobat or Apple Preview.

• An Internet connection, because the PDF documentation is only stored at
the MathWorks Web site.

To access and print the PDF documentation:

1 In the Help browser Contents pane, select a product. The product
roadmap page opens.

4-35



4 Getting Help and Product Information

2 For Printable (PDF) Documentation on the Web, select the link for the
document you want to print.

The Help browser accesses the PDF document from the MathWorks Web
site and opens it in your PDF reader. It can take some time for the PDF to
open and load completely if the bandwidth of your Internet connection is
limited.

On UNIX9 platforms, if the PDF documentation fails to open, check the
Help Preferences. See “Specifying the PDF Reader Location — UNIX
Platforms Only” on page 4-33.

3 Locate the pages to print. You can use the Table of Contents and the Index,
both of which provide links.

4 Print the documentation from the PDF reader.

You can save the PDF to local storage if you intend to refer to it again.

Obtaining Printed Manuals
Some MathWorks products provide printed “Getting Started” manuals.

Note Printed manuals contain a small subset of the online documentation
and might not include the most current information.

To find out what printed manuals are currently available, contact MathWorks
Sales.

9. UNIX is a registered trademark of The Open Group in the United States and other
countries.

4-36

http://www.mathworks.com/company/aboutus/contact_us/contact_sales.html
http://www.mathworks.com/company/aboutus/contact_us/contact_sales.html


Additional Help and Learning Resources

Additional Help and Learning Resources

In this section...

“Obtaining Information About your Installation” on page 4-37

“Obtaining Technical Support” on page 4-38

“Product Documentation at the MathWorks Web Site” on page 4-39

“Newsgroup for MathWorks Products” on page 4-40

“File Exchange — Files Created By Other Users” on page 4-40

“Blogs for MathWorks Products” on page 4-40

“Newsletters for MathWorks Products” on page 4-40

“Seminars and Webinars for MathWorks Products” on page 4-40

“Training for MathWorks Products” on page 4-41

Obtaining Information About your Installation
MATLAB software can tell you what products are installed, their versions,
and other information about your license and platform. This information is
important to have in the event you contact technical support.

Type of
Information You
Want

To Get the Information

Version and license
for Installed product

From the product, select Help > About.

Or use functions:

• license — for the license number

• ver — for version numbers for MATLAB and
libraries

• version — for version numbers for MathWorks
products

4-37



4 Getting Help and Product Information

Type of
Information You
Want

To Get the Information

Processor speed
for the MATLAB
version currently
running

In MATLAB, select Help > About MATLAB. The
About MATLAB dialog box shows 32-bit or 64-bit.

arch value used for
the mex function

In MATLAB, select Help > About MATLAB. The
About MATLAB dialog box shows the arch value,
for example win32.

Or use the computer function.

Passcodes and
licenses

From any desktop tool, select Help > Web
Resources > MathWorks Account.

For related information concerning system requirements, and procedures for
installing , activating, and uninstalling products, see the installation guide
for your computer platform.

Obtaining Technical Support
Technical support provides bug reports and workarounds, solutions to
questions, published books and more.

Ways to access technical support:

• From MATLAB, select Help > Web Resources > Support.

• From a Web browser, go to http://www.mathworks.com/support.

• Search in the support solutions, technical notes, and bug reports from
MATLAB:

1 Perform a search in the Help browser.

2 At the bottom of the Search Results pane, click Search Online
Support for.

The results display in your system Web browser.

4-38

http://www.mathworks.com/support


Additional Help and Learning Resources

Product Documentation at the MathWorks Web Site
The MathWorks Web site provides documentation for the latest version of
all MathWorks products. To view the Web site documentation, you need an
Internet connection and a Web browser. You can view documentation on the
Web site even if MATLAB is not installed on your system.

To access documentation for MATLAB or other MathWorks products:

• From MATLAB, select Help > Web Resources > Support.

• In a Web browser, go to
http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml. Select
the product containing the documentation you want to read, or type search
terms into the search box on that page to locate specific content.

• From a page you are viewing in the Help browser, you can usually go
to the same page in the documentation on the Web site. With the page
displayed in the Help browser, select View > Page Location. The Help
Page Location dialog box opens. Click Go to open the page in your system
browser. See “Getting the Link to a Page” on page 4-12.

A good way to get an overview of what’s new or different in a release is to read
the general Release Notes, which, for the version of MATLAB you are using,
is also the first item in the Contents pane of the Help Navigator.

The documentation on the Web site can inform you about:

• MathWorks products that you do not have installed

• The latest release, if you are running an older version of MATLAB or
another product

For more information, See “Product Documentation at the MathWorks Web
Site” on page 4-39.

Obtaining Documentation in Different Languages
MathWorks usually provides Japanese translations of product documentation
about 2 months after new versions of products first ship. When
you install the new version of most products, the previous version of
translated documentation is installed on your system along with the

4-39

http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml
http://www.mathworks.com/access/helpdesk/help/base/relnotes/


4 Getting Help and Product Information

current version of the English documentation. To read the most current
documentation for your release, you can switch the Help browser to
English. After the translations of the latest documentation are available,
you can download and install them in your products. At that time,
you can find a link to download the latest translated documentation at
http://www.mathworks.co.jp/access/helpdesk/help/helpdesk.html. For
information about documentation in languages other than English, contact
your MathWorks sales and service office.

Newsgroup for MathWorks Products
Access a user forum, the Usenet newsgroup comp.soft-sys.matlab (also
known as cssm), to find, ask for, or provide help.

Select Help > Web Resources > MATLAB Newsgroup Access, or go to
http://www.mathworks.com/matlabcentral.

File Exchange — Files Created By Other Users
Before you code your own programs, see if someone has already programmed
a similar application. Use program files created by other MATLAB users to
save you time and provide you with new ideas for your own work. See Chapter
8, “File Exchange — Finding and Getting Files Created by Other Users”.

Blogs for MathWorks Products
Read weekly commentary from the people who design and build MATLAB and
other MathWorks products.

Newsletters for MathWorks Products
Read News and Notes and the MATLAB Digest online. Select
Help > Web Resources > MATLAB Newsletters, or go to
http://www.mathworks.com/company/newsletters/.

Seminars and Webinars for MathWorks Products
See http://www.mathworks.com/company/events/.

4-40

http://www.mathworks.co.jp/access/helpdesk/help/helpdesk.html
http://www.mathworks.com/matlabcentral
http://www.mathworks.com/company/newsletters/
http://www.mathworks.com/company/events/


Additional Help and Learning Resources

Training for MathWorks Products
For details, select Help > Web Resources > Training, or go to
http://www.mathworks.com/services/training.

4-41

http://www.mathworks.com/services/training


4 Getting Help and Product Information

4-42



5

Customizing Help and
Demos

• “Getting Help for Files Created by Others” on page 5-2

• “Providing Your Own Help and Demos” on page 5-8

• “Adding Demos to the Help Browser” on page 5-52

• “Addressing Validation Errors for info.xml Files” on page 5-61



5 Customizing Help and Demos

Getting Help for Files Created by Others

In this section...

“About Help for Files Created by Others” on page 5-2

“Getting Command-Line Help for Externally Supplied Program Files” on
page 5-2

“Viewing a Help Summary for Externally Supplied Files” on page 5-3

“Accessing Help for Externally Supplied Class Files” on page 5-3

“Accessing Externally Supplied Documentation in the Help Browser” on
page 5-6

“Accessing Externally Supplied Demos in the Help Browser” on page 5-7

About Help for Files Created by Others
When you use functions and applications not provided by MathWorks, you can
also access help and demos for them provided by their authors. File creators
can provide help in several forms. If you can, ask the creators what help they
provided, or try to find the information as described in the following topics.

Getting Command-Line Help for Externally Supplied
Program Files
A function or a script is a MATLAB program file with a .m extension. To get
help for a externally supplied function or script:

1 Verify that the file is in the current folder or a folder that is on the search
path.

2 In the Command Window, type help filename.

If the creator of the file included help comments at the top of the file, then
help for the file appears in the Command Window.

To provide help for your own files, see “Adding Help for Your Program Files”
on page 5-9.

5-2



Getting Help for Files Created by Others

Viewing a Help Summary for Externally Supplied
Files
You can get a help summary for all files in a folder. The MathWorks family
of products refers to collections of program files that work together as
toolboxes. A toolbox is a collection of programs and other files that work
with MathWorks products. Toolboxes generally augment the capabilities of
MATLAB and Simulink in particular domains.

To enable a help summary, each folder containing the externally supplied
functions must contain a file named Contents.m. Look for a Contents.m file
in the folder. If this file exists, you can view the help summary as follows:

1 Make sure MATLAB can access the folder you want to get the help
summary for. Either designate the folder the current folder, or add the
folder to the search path.

2 Run help foldername.

A summary description of all files in the folder displays in the Command
Window.

3 To display the help summary information in the Help browser instead of
the Command Window, run helpwin foldername.

You can see the help resources for all files in a folder by running a Help
Report from the Current Folder browser. If no Contents.m file exists, the
Help Report can create one for you.

To see the version number for the collection of files in the folder, run ver.

To provide a help summary for your own files, see “Creating a Help Summary
for Your Program Files” on page 5-12.

Accessing Help for Externally Supplied Class Files
You can get help for class files created by others if the author included help
comments in the class file.

To get help, run help classname. The help text can display hyperlinks to
help for properties and methods of the class. If help for an item exists, that

5-3



5 Customizing Help and Demos

help displays in the Command Window when you click the corresponding
hyperlink. The help for a class definition looks like that shown in the
following example.

If you run

doc classname

The same help for the class displays in the Help browser, looking like that
shown in the following figure.

5-4



Getting Help for Files Created by Others

To get help for related files in the class, you can click the links on the class
page in the Command Window or Help browser. You can also run any of the
following commands:

5-5



5 Customizing Help and Demos

• doc classname.methodname

• doc classname.propertyname

• doc classname.eventname

For an example, see “Example of Help for a Externally Supplied Class” on
page 5-14.

You can also access the help when you create an instance of a class and open
the object in the Variable Editor. Click the class name link, which is below
the toolbar in the Variable Editor. For more information, see “Getting Help
for Objects and Properties from the Variable Editor” on page 6-33.

To provide help for your class files, see “Adding Help for Classes You Create”
on page 5-13.

Accessing Externally Supplied Documentation in the
Help Browser
If a program author provided HTML documentation for an application, you
can read it in the Help browser or a Web browser. Look in the Help browser
Contents pane for any entries that are not from the MathWorks.

Pages of externally provided HTML documentation display as entries in the
appropriate section of the Contents listing. For example, documentation
for an author’s blockset appears alphabetized with other blocksets.
Documentation for an author’s toolbox appears with other toolbox entries,
also in alphabetical order.

To browse the documentation, expand the entry for that blockset or toolbox in
the Contents pane.

You can search for words in the documentation if the author provided a
search database.

Even if you cannot see externally supplied documentation in the Contents
pane, you can still view it. You can display any HTML page in the Help
browser with the web function. For example, to display the reference page for
my_function in the Help browser, obtain the path to it and run:

5-6



Getting Help for Files Created by Others

web('C:\myfiles\mytoolbox\my_function.html', '-helpbrowser')

If you do not include '-helpbrowser', the page opens in a separate browser
window.

Note The doc function does not display externally supplied reference pages.
However, externally-supplied class definitions do appear.

To provide documentation for the Help browser for your own programs, see
“Adding HTML Help Files to the Help Browser” on page 5-17.

Accessing Externally Supplied Demos in the Help
Browser
If an author provided HTML documentation for demos, you can read that
documentation in the Help browser or a Web browser. Demos from external
authors appear in the last entry in the Contents pane, labeled Other Demos.

To browse the externally supplied demos, expand the Other Demos entry. If
you do not see the Other Demos entry, right-click in the Contents pane and
select Refresh demos. If the Other Demos entry still does not appear, either
the externally supplied demo folder is not on the search path or the folder
does not contain the appropriate content.

To troubleshoot problems displaying other authors’ demos or to learn how to
display your own demos, see “Adding Demos to the Help Browser” on page
5-52.

5-7



5 Customizing Help and Demos

Providing Your Own Help and Demos

In this section...

“About Providing Help and Demos” on page 5-8

“Adding Help for Your Program Files” on page 5-9

“Adding HTML Help Files to the Help Browser” on page 5-17

About Providing Help and Demos
You can provide help and demos for the files you create and have them appear
formatted like the help and demos MATLAB provides. Including help can
be worthwhile for you and others with whom you share your files. As the
following table explains, you can provide help in various forms. The table
presents guidelines for creating the kinds of help that best suit your program
files and the people who need to use them.

Type of Help Description See

Help comments • Describe individual program files you create

• Provide formatted comments at the start of a
MATLAB program file

• Display the help comments when you type help
filename

• Easy to provide

“Adding Help for
Your Program Files”
on page 5-9

Contents.m file • Describes a collection of program files

• Provides a summary file for all files in a folder

• Displays the summary when you type help
foldername

• Can include a version number

• Easy to provide

• Can be empty to avoid listing folder contents

• “Creating a Help
Summary for Your
Program Files” on
page 5-12

5-8



Providing Your Own Help and Demos

Type of Help Description See

MATLAB class files • Describes classes you create

• Provides help in the class definition file, and
optionally for class methods, properties and
events

• View the help by running help classname or
doc classname

• Easy to provide, but requires object-oriented
programming knowledge to create classes

“Adding Help for
Classes You Create”
on page 5-13

Documentation in
the Help browser

• Supports graphics, images, stylized text,
and page formatting. Suited for how-to and
conceptual information that helps others run
your files

• Can include reference pages for functions and
blocks

• Can include a search database to support
searching your documentation

• More effort than providing help in program files

• Requires the ability to create HTML files and
edit XML files

“Adding HTML Help
Files to the Help
Browser” on page
5-17

Demos in the Help
browser

• Suited for explaining how something works,
step-by-step. Supports graphics, images,
stylized text, and page formatting

• Others can view, edit and run your demos

• Can be generated from code scripts

• View the demos using the Contents pane in the
Help browser

“Adding Demos to
the Help Browser” on
page 5-52

Adding Help for Your Program Files
You can include help text in each program file that you create which displays
like the help for MATLAB functions when you use the help function. For
more information, see “Getting Command-Line Help for Externally Supplied

5-9



5 Customizing Help and Demos

Program Files” on page 5-2. You can also create a help summary to describe
all program files within a folder and for MATLAB Classes you define.

• “Providing Help Within a Program File” on page 5-10

• “Creating a Help Summary for Your Program Files” on page 5-12

• “Adding Help for Classes You Create” on page 5-13

Providing Help Within a Program File
You can and should provide help text at the top of any file with a .m extension
that you create. Help consists of lines of comments at the beginning of a file.
For information on formatting the help, see “Basic Parts of a Program File”.
For examples of help for program files, open the MATLAB function files you
are familiar with in the Editor. For information about formatting help in the
Editor, see “Adding Comments” on page 9-40.

At the end of your help text, add the names of related functions on a line that
begins with % See also. The list of names can include MATLAB functions,
toolbox functions, and your own functions. The help command displays each
of these function names as a hyperlink to its help, if the function exists on
the search path.

After the See also line, if any, end your help text with a blank line (without
a %).

You can include hyperlinks (in the form of URLs) to HTML files or Web
sites anywhere in your help text. Create hyperlinks by including an HTML
<A> </A> anchor element. Within the anchor, use amatlab: statement
(pronounced matlabcolon) to execute a web command. For example:

% For more information, see <a href="matlab:
% web('http://www.mathworks.com')">the MathWorks Web site</a>.

When you are connected to the Internet and click the link the MathWorks
Web site, MATLAB opens a Web browser window to display the URL.

For related information, see “Displaying Hyperlinks in the Command
Window” on page 3-12.

5-10

http://www.mathworks.com
http://www.mathworks.com


Providing Your Own Help and Demos

Tip To make your help easy for readers to follow, be consistent in how you
structure it. For example, follow the style that MATLAB functions use.

To help you create and manage help for your own files, use the “Generating a
Summary View of the Help Components in Functions and Scripts” on page
10-8.

The collatz.m example file illustrates help text formatting for a function:

function sequence=collatz(n)

% COLLATZ Collatz problem. Generate a sequence of integers resolving to 1

% For any positive integer, n:

% Divide n by 2 if n is even

% Multiply n by 3 and add 1 if n is odd

% Repeat for the result

% Continue until the result is 1

%

% See also COLLATZPLOT, LENGTH, MYFILES/LENGTH.

sequence = n

...

Click here to add the help examples folder to the search path. Then, when you
run help collatz, MATLAB displays:

COLLATZ Collatz problem. Generate a sequence of integers resolving to 1

For any positive integer, n:

Divide n by 2 if n is even

Multiply n by 3 and add 1 if n is odd

Repeat for the result

Continue until the result is 1

See also collatzplot, myfiles/length.

If functions listed in the See also line exist on the search path or current
folder, MATLAB converts them to lowercase and displays them as hyperlinks.
Otherwise, MATLAB prints the function names as they appear in the help
text.

5-11



5 Customizing Help and Demos

Creating a Help Summary for Your Program Files
Provide a summary file for your own collection of program files using the
same method as MATLAB. In MATLAB, each folder containing program files
includes is a file named Contents.m (with a capital C) that lists the functions
in the folder with a brief description of each.

Running help foldername displays the text from theContents.m file for that
folder. The displayed help has hyperlinks to help for the individual functions.
Running helpwin foldername displays the same information in the Help
browser.

To create your own Contents.m files:

• In the Editor, display a Contents.m file provided with MATLAB to see its
structure. Most folders in the program tree contain a Contents.m file.

• Read about “Displaying and Updating a Report on the Contents of a Folder”
on page 10-11 to learn how to easily create and maintain your Contents.m
files.

• Provide your own toolbox name, a version, and a date in the first two lines
of the Contents.m file, which the ver function displays:

% Toolbox description
% Version xxx dd-mmm-yyyy

Do not include any spaces in the date. Use this format: 12-Mar-2010.

Tip If you do not want your users to see a summary of your toolbox functions,
place an empty Contents.m file in the toolbox folder. An empty Contents.m
causes help foldername to report No help found for foldername.

The Upslope Area toolbox example folder contains a Contents.m file. For
more information, see “Learning to Add Help from Examples” on page 5-18.

You can create a categorical listings of functions for the Help browser by
marking up your Contents.m file and publishing it to HTML. To learn more,
see “Creating Function and Block Category Listings” on page 5-38.

5-12



Providing Your Own Help and Demos

Adding Help for Classes You Create
If you create your own MATLAB classes, you can provide help for the class
by including comments in the class definition file:

• Provide help about the class in comment lines directly following the
classdef statement.

• Add a comment line directly after the constructor method for the class.

• Add comments directly after other methods and next to property definitions.

List the properties and methods of the class within the first block of comments
after classdef. If you format the list in as described here, MATLAB renders
the property and method names you list as hyperlinks to their definitions,
which appear later in the same file:

1 To create links from this section to your class properties, add a line:

% Classname Properties:

where Classname is the name from your classdef. Be sure to put a colon
(:) after Properties.

2 List your property names (with optional same-line descriptions) on the
following lines. For example:

% prop1 - first property
% prop2 - second property

3 List the methods; enter the class name followed by Methods: (include a
colon). Then, list your methods (with optional same-line descriptions) on
the following lines, as follows:

% MyClass Methods:
% method1 - first method
% method2 - second method

View help for your class in the Command Window:

help classname

To view the same help for the class in the Help browser, run:

5-13



5 Customizing Help and Demos

doc classname

Note You do not need to prepare HTML versions of class definition file help.
MATLAB generates an HTML page from each class definition automatically
and displays it in the Help browser.

For more information about getting help for classes, see “Accessing Help for
Externally Supplied Class Files” on page 5-3. To learn more about how to
create class definitions, see “Defining and Organizing Classes”.

Example of Help for a Externally Supplied Class. The following example
shows help for a class file, sads.m, an example provided with MATLAB
documentation. If you create help for your class files, the help should look
and work like this example.

Follow these steps to see the help for the example.

1 Make sure you can access the examples folder by either:

• Changing to Designating the folder containing the example file as your
current folder:

cd(fullfile(matlabroot,'help','techdoc','matlab_env', 'examples'))

• Adding the examples folder to the search path:

addpath(fullfile(matlabroot,'help','techdoc','matlab_env', 'examples'))

Or, Click here to add the help examples folder to the search path.

2 Open the class file in the Editor to see the help comments.

open('sads.m')

3 View help for the sads class in the Help browser:

doc sads

5-14



Providing Your Own Help and Demos

4 Access more information by following links on the class help page or by
using the doc function. For example, to get help for the steer method, do
one of the following:

• Click the steer link under Method Summary.

5-15



5 Customizing Help and Demos

• Run doc sads.steer.

You also can open the sads.m file by clicking the View code for sads link
at the top of the sads help page. For instructions to display the sads help
page, see “Example of Help for a Externally Supplied Class” on page 5-14.

5 Next, view information about sads objects another way. Create an instance
of sads, for example, sensorArray, and then open that object in the
Variable Editor:

loadparameters

sensorArray=sads(Data, Wavelength,SampleRate,Spacing,Name);

openvar sensorArray /% or double-click sesnorArray in the Current Folder browser

5-16



Providing Your Own Help and Demos

Adding HTML Help Files to the Help Browser
MathWorks and third parties provide a rich set of toolboxes, blocksets, and
target and link products. Almost all such products come with documentation
that displays in the Help browser.

If you create a toolbox that works with MathWorks products—even if it only
contains a few functions—you can include with it HTML help files that you
and others can access using the Help browser. Providing HTML help files
for your toolbox allows you to include figures, diagrams, screen captures,
equations, and formatting to make your toolbox more usable. For more
information, see these topics:

• “Types of Documentation You Can Provide” on page 5-18

• “Learning to Add Help from Examples” on page 5-18

• “Summary of Creating and Installing HTML Help Files” on page 5-19

• “Organizing Your Documentation” on page 5-20

• “Creating Function Reference Pages” on page 5-33

• “Creating Function and Block Category Listings” on page 5-38

• “Making Your HTML Help Files Searchable” on page 5-45

• “Summary of Workflow for Providing HTML Help Files” on page 5-46

5-17



5 Customizing Help and Demos

Types of Documentation You Can Provide
Consider providing the following types of content in your documentation:

• A start page for your toolbox (called a “roadmap”)

• A quick introduction to your toolbox (“getting started guide”)

• A detailed explanation of using your toolbox (“user guide”)

• Function or block reference pages

• A list of examples, hyperlinked to the documentation set

• Release notes, describing improvements, limitations, known bugs, and
so forth

• PDF versions of your HTML files (typically accessed from the roadmap
page)

Except for the PDF version of documentation, each of these types of help is a
set of one or more HTML pages that you create in the Editor, word processing
software, or an HTML authoring environment. Many such applications can
also export their source documents as PDF files.

Note You are free to organize and format your help documentation as you
choose. However, if you structure your help files similarly to documentation
from MathWorks, people who use it will understand where to find specific
types of information.

Learning to Add Help from Examples
To learn how to create documentation for the Help browser, refer to examples.
This documentation provides two folders that you can copy. These folders
contain:

• Template XML files containing required and optional sections, with
explanatory comments

You find this folder in
matlabroot/help/techdoc/matlab_env/examples/templates. Always

5-18



Providing Your Own Help and Demos

work with copies of the files it contains when making modifications. You
must edit in your own content to the templates to make them usable.

• A complete toolbox with code you can run (called Upslope Area Toolbox),
accompanied by extensive HTML documentation that you can view in the
Help browser

Find this example in the folder
matlabroot/help/techdoc/matlab_env/examples/upslope. You can use
functions from the toolbox and view the help by adding the folder to the
search path. However, if you choose to modify any of the files it contains,
copy the entire upslope folder to a working folder.

Note Some functionality of Upslope Area Toolbox depends on Image
Processing Toolbox. If you have Image Processing Toolbox installed, clicking
here brings you to its documentation.

The following sections primarily discuss the XML template files for info.xml
and helptoc.xml, showing you how to modify them to create a documentation
set. The examples folder provides templates only for XML files, not
HTML files. Therefore, to understand how the XML files access HTML
documentation files and what those files contain, refer to corresponding files
in the example Upslope Area Toolbox folder.

Summary of Creating and Installing HTML Help Files
To add your own documentation to the Help browser, you need to:

1 Decide what types of documentation you want to provide and create HTML
help files for your toolbox. See “Types of Documentation You Can Provide”
on page 5-18.

2 Create an info.xml and helptoc.xml files based on examples. See
“Organizing Your Documentation” on page 5-20.

3 Optionally create a search database to include your HTML help files in
the Help browser search results. See “Making Your HTML Help Files
Searchable” on page 5-45.

5-19



5 Customizing Help and Demos

4 Add the HTML files to the Help browser, by editing and incorporating
XML and other special files you create. For step-by-step instructions, see
“Summary of Workflow for Providing HTML Help Files” on page 5-46.

5 Provide the help files to your program users, along with instructions for
including the files in the Help browser.

To create HTML help files, use the MATLAB Editor, another text editor, or
an HTML editing tool. If you have an XML authoring system, you can develop
documentation in that environment and export it as HTML files.

If you use the Editor, enabling syntax highlighting and indenting features
will help as you author HTML and XML files. The editor can automatically
color syntax for .htm, .html, and .xml source files.

Tip To customize the syntax highlighting and indenting in the Editor,
select File > Preferences > Editor/Debugger > Language, and choose
XML/HTML.

Verify how your HTML files appear in the Help browser. To view an HTML
help file that you created, use the web function. For example, display an
HTML file from the set of examples provided for this topic:

web(fullfile(matlabroot, 'help','techdoc','matlab_env' ,...

'examples','upslope','html','upslope_functions_by_cat.html'))

Organizing Your Documentation
After you decide which types of documentation to show in the Help browser,
you need to provide HTML and XML files, and link them to work together.
The following sections describe how to set up your help documentation.

• “Setting Up a Help Folder” on page 5-21

• “XML Files Required to Add Documentation and Demos” on page 5-23

• “Identifying a Help Folder: the info.xml File” on page 5-24

• “Customizing the info.xml Template File” on page 5-26

• “More About the info.xml File” on page 5-27

5-20



Providing Your Own Help and Demos

• “Creating the Table of Contents File: helptoc.xml” on page 5-29

• “More About the helptoc.xml File” on page 5-32

Note To view the content and organization of the Upslope Area toolbox
documentation example, place it on the search path by clicking here, or run
this command:

addpath(fullfile(matlabroot, 'help','techdoc','matlab_env','examples','upslope'))

Setting Up a Help Folder. Make a folder to hold HTML and XML files.
The folder can contain subfolders to organize HTML and image files. It can
also contain MATLAB program files for your toolbox, or you can locate your
code files in a different folder. A typical toolbox folder contains the following
kinds of elements:

Note Folders and file names that you specify are in italics in this listing.
Folders are prefixed with a forward slash (/). On the right side, comments
that are in italics are directives for you to follow.

/mytoolbox Top level folder for toolbox
documentation; can also contain
your program files.

info.xml
Indicates to MATLAB that this
folder contains Help browser
documentation, and points to
content. Required; must have this
file name.

5-21



5 Customizing Help and Demos

*.m
*.mat
*.fig

...

Program code, data, GUI, and other
files for your toolbox. You can also
locate program files in a separate
folder or a subfolder of this one
that you place on the search path.
Also include a Contents.m file here
summarizing the program files.

/html
Optional subfolder for your HTML
documentation content; it can have
any name, which must be specified
in your info.xml file.

helptoc.xml
Defines hierarchy of help files.
Required; must have this file name.

mytoolbox_
product_page.html

Roadmap (start page) for your
documentation. Use folder name
followed by ”_product_page.html”.
Optional but recommended.

getting_started_1.html
...

getting_started_n.html

Optional content for getting started
guide.

user_guide_1.html
...

user_guide_n.html

Content for user guide.

helpfuncbycat.html
Optional functions-by-category
listing containing links to function
reference HTML files.

release_note_1.html
...

release_note_n.html

Release notes files.

/graphics
Optional subfolder for images used
in HTML pages; when you use a
subfolder, HTML <image> elements
must specify this path to image files.

5-22



Providing Your Own Help and Demos

image_1.png
...

image_n.gif

Bitmap graphics files (usually .gif,
.png, or .jpg). Do not store custom
icons for the TOC here, as they
cannot be found.

/reference
Optional subfolder for function or
block reference pages; when you use
a subfolder, HTML <A> hyperlinks
to reference pages must specify this
path.

function_1.html
...

function_n.html

Function/block reference page files.

XML Files Required to Add Documentation and Demos. The Help
Browser relies on several files coded in XML to recognize and present the
contents of documentation and demos. These files always have the same
names:

• info.xml — Required file that indicates that a folder contains
documentation or demos.

• helptoc.xml— Required file that provides a structure for presenting the
documentation set in the Contents pane.

• demos.xml— Optional file to add your demos to the Other Demos section
of the Contents pane. See “Adding Demos to the Help Browser” on page
5-52.

In addition, you must create and provide the HTML content pages referenced
by these files and graphic files for images that they display.

5-23



5 Customizing Help and Demos

Identifying a Help Folder: the info.xml File. The info.xml file specifies
the content type, name, and icon to display for your documentation set. It also
identifies where to find your HTML help files, and defines items you add to
the Start button. You must create a file named info.xml for each toolbox
you document. When you include a file having this name in a folder and then
add that folder to the search path, MATLAB adds the documentation for
your toolbox to the Help browser Contents pane. The folder that info.xml
identifies as <help_location> must contain your HTML documentation and
a file named helptoc.xml.

The following listing is a template for info.xml that you can adapt to describe
your toolbox:

<productinfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="optional">

<?xml-stylesheet type="text/xsl"href="optional"?>

<!-- info.xml file for the mytoolbox toolbox -->

<!-- Version 1.0 -->

<!-- Copyright (date) (owner).-->

<!-- Supply the following six elements in the order specified -->

<!-- (Required) element; matlabrelease content is not currently used -->

<matlabrelease>2010a</matlabrelease>

<!-- (Required) The name element appears in the Contents pane -->

<name>MyToolbox</name>

<!-- (Required) The type elementidentifies your package; pick one: -->

<!-- matlab, toolbox, simulink, blockset, links_targets -->

<type>toolbox</type>

<!-- (Optional) icon file to display in the Start button -->

<icon>sampleicon.gif</icon>

<!-- (Required if you supply help) relative path to help (HTML) folder -->

<help_location>./HTMLfolderName</help_location>

<!-- (Required if you supply help) icon used in the Help browser TOC -->

<help_contents_icon>$toolbox/matlab/icons/bookicon.gif</help_contents_icon>

<!-- - - - - - - - - - - - - Start menu - - - - - - - - - - - - - - - -->

<!-- Optional list of entries to display on Start Menu -->

<!-- Callback items are function calls or commands for toolbox -->

<!-- Refresh the Start button to see your entries -->

<!-- Remove this list if you do not want a Start button entry -->

5-24



Providing Your Own Help and Demos

<list>

<listitem>

<!-- The label provides the text for this menu item -->

<label>MyToolbox Documentation</label>

<!-- This callback is a command to open your documentation -->

<callback>

web ./html/mytoolbox_product_page.html -helpbrowser

</callback>

<!-- Menu item icon (a toolbox icon from the help browser ) -->

<icon>$toolbox/matlab/icons/bookicon.gif</icon>

</listitem>

<listitem>

<!-- A menu item label for a opening a GUI -->

<label>MyToolbox GUI</label>

<!-- A command to open a GUI, if any -->

<callback>mytoolboxgui</callback>

<!-- The icon for this menu item -->

<icon>$toolbox/matlab/icons/figureicon.gif</icon>

</listitem>

<listitem>

<!-- A menu item label for a opening a demo -->

<label>MyToolbox Demo</label>

<!-- A command to open a demo if any -->

<callback>mytoolboxdemo</callback>

<!-- The icon for this menu item -->

<icon>HelpIcon.DEMOS</icon>

</listitem>

<listitem>

<!-- Include call to open your Web site, if any -->

<label>MyToolbox Web Site</label>

<callback>web http://www.mathworks.com -browser</callback>

<icon>$docroot/techdoc/matlab_env/examples/webicon.gif</icon>

</listitem>

<!-- Add listitems for other features of your toolbox... -->

</list>

<!-- - - - - - - - - - - - - Start menu - - - - - - - - - - - - - - - -->

</productinfo>

5-25



5 Customizing Help and Demos

Note To avoid XML validation errors, include all required elements in the
order specified by the template file. If you are not adding a toolbox to the
Start button menu, omit the lines bracketed by

<!-- - - - - - - - - - - - - Start menu - - - - - - - - - - - - - - - -->

For more information, see “Addressing Validation Errors for info.xml Files”
on page 5-61

Replace the contents within the <matlabrelease>, <name>, <type>, and
<help_location> elements with appropriate text for your toolbox. The
contents of <help_location> is folder name, which usually includes a relative
path. Typically, you place the help folder within the folder containing the
info.xml file. You can include comments in info.xml or any other XML file.
For example, you can add copyright and contact information. Lines starting
with <!-- and ending with--> contain comments.

When you add a help folder to the Help browser for the first time, take the
following actions:

1 Add your toolbox or blockset folder to the search path

Make sure that the folder you are adding is not your current folder when
you perform this step.

2 Open MATLAB Preferences from the File menu.

3 Click Help, and then select the All Products button.

After MATLAB has identified your folder as a toolbox or blockset and
displayed it in the Help browser, you can remove products from the Help
browser you do not need to show.

Customizing the info.xml Template File. To specify and structure your
own documentation content, copy, edit, and save the template file, as follows:

1 In the Editor, open the XML template. You can either:

• Copy the preceding listing and paste it into a new blank document.

5-26



Providing Your Own Help and Demos

• Copy the info_template.xml template example file to your current
folder:

copyfile(fullfile(matlabroot,'help','techdoc','matlab_env', ...

'examples','templates','info_template.xml'),pwd), ...

fileattrib('info_template.xml','+w')

or click here to copy the template. Then, open the copy in the Editor.

2 Save the file as info.xml in your toolbox folder. Saving as a .xml file
enables Editor syntax highlighting.

3 Replace italicized text in the listing with your own content.

4 If you are not adding any items to the Start menu, delete the - - Start
menu - - section. If you want to customize the Start menu, you must
modify the listitem elements. For instructions, see “Adding Your Own
Toolboxes to the Start Button” on page 2-96.

5 Resave the info.xml file when you finish making changes.

More About the info.xml File. The info.xml file adds
the HTML help files to the Help browser and items to the Start
menu. The following table describes the example info.xml
file provided as a toolbox template. The source file is
matlabroot/help/techdoc/matlab_env/examples/templates/info_template.xml.

XML Tag Description Value in Template Notes

<matlabrelease> Release of
MATLAB.

R2010a Required. Not currently parsed,
but indicates when you added
help files.

<name> Title of
toolbox.

mytoolbox Required. The name of your
toolbox that appears in the Help
browser Contents pane.

5-27



5 Customizing Help and Demos

XML Tag Description Value in Template Notes

<type> Determines
the toolbox
location in the
Help browser
Contents.

toolbox Required. Allowable values:
matlab, toolbox, simulink,
blockset, links_targets,
other. The Upslope Area
toolbox example appears with
other toolboxes. The entry has
the orange book icon used for
toolboxes.

<icon> Icon for your
toolbox help
in the Start
button.

sampleicon.gif If you add your toolbox to
the Start button options and
include a help entry there,
specify an icon image file.
For more information, see the
<list><listitem> description.

<help_location> Location of
help files

./HTMLfolderName Name of subfolder containing
helptoc.xml and HTML help
files you provide for your toolbox.
If not a subfolder, specify
the path to help_location
relative to the info.xml file.
If you provide HTML help
files for multiple toolboxes,
each help_location must be a
different folder.

<help_contents_icon>Icon to
display in
Help browser
Contents pane

$toolbox/matlab/icons/bookicon.gifRequired if you supply HTML
help files.

<list>

<listitem> ...

Entries for
Start button

various If you also want your toolbox to
appear as a Start button option,
add at least one listitem. For
details, see “Adding Your Own
Toolboxes to the Start Button”
on page 2-96.

When you set up an XML file, make sure that:

5-28



Providing Your Own Help and Demos

• You include all required entries;

• The entries are in the same order as in the preceding list and in the
template;

• File and folder names in the XML exactly match the names of your files
and folders and use upper and lower case letters identically.

For examples, look at the info.xml file for any MathWorks product. To view
one of these files:

1 Select Start > Desktop Tools > View Start Button Configuration
Files files.

2 From the resulting Start Button Configuration Files dialog box, select the
product.

3 Click Open to view the info.xml file in the Editor.

Note The info.xml files for MathWorks products contain custom constructs
and features that externally supplied info.xml files cannot implement.

Creating the Table of Contents File: helptoc.xml. You must also create a
file named helptoc.xml. Place this file in the folder containing your HTML
documentation files. This folder is designated as <help_location> in your
info.xml file. Within a top-level <toc> element, nest <tocitem> elements to
define the structure of your table of contents. This template for helptoc.xml
explains its organization:

<?xml version='1.0' encoding="utf-8"?>

<toc version="2.0">

<!-- First tocitem specifies top level in Help browser Contents pane -->

<!-- This can be a roadmap page, as shown below, or a content page -->

<tocitem target="mytoolbox_product_page.html">MyToolbox Toolbox

<!-- Nest tocitems to create hierarchical entries in Contents-->

<!-- To include icons, use the following syntax for tocitems: -->

<!-- <tocitem target="foo.html" image="HelpIcon.NAME"> -->

<!-- Title-of-Section </tocitem> -->

5-29



5 Customizing Help and Demos

<!-- where NAME is one of the following (use capital letters): -->

<!-- FUNCTION, USER_GUIDE, EXAMPLES, BLOCK, GETTING_STARTED, -->

<!-- DEMOS, RELEASE_NOTES -->

<!-- Icon images used for these entries are also stored in -->

<!-- matlabroot/toolbox/matlab/icons -->

<!-- A Getting Started Guide usually comes first -->

<tocitem target="mytbx_gs_top.html" image="HelpIcon.GETTING_STARTED">

Getting Started with the MyToolbox Toolbox

<tocitem target="mytbx_reqts_example.html">System Requirements

</tocitem>

<tocitem target="mytbx_features_example.html">Features

<!-- 2nd and lower TOC levels usually have anchor IDs -->

<tocitem target="mytbx_feature1_example.htm#10187">Feature 1

</tocitem>

<tocitem target="mytbx_feature2_example.htm#10193">Feature 2

</tocitem>

</tocitem>

</tocitem>

<!-- User Guide comes next -->

<tocitem target="mytbx_ug_intro.html"

image="HelpIcon.USER_GUIDE">MyToolbox User Guide

<tocitem target="mytbx_ch_1.html">Setting Up MyToolbox

</tocitem>

<tocitem target="mytbx_ch_2.html">Processing Data

</tocitem>

<tocitem target="mytbx_ch_3.html">Verifying MyToolbox outputs

<tocitem target="mytbx_ch_3a.html">Handling Test Failures

</tocitem>

</tocitem>

</tocitem>

<!-- Function reference next -->

<!-- The first file lists all of the functions, categorizing them -->

<tocitem target="function_categories.html">Functions

<!-- First category, with link to anchor in above page -->

<tocitem target="function_categories.html#1">First Category

<!-- Inside category, list its functions alphabetically -->

<tocitem target="function_1.html">function_1</tocitem>

<tocitem target="function_2.html">function_2</tocitem>

<!-- ... -->

</tocitem>

5-30



Providing Your Own Help and Demos

<!-- Second category, with link to anchor in above page -->

<tocitem target="helpfuncbycat.html#2">Second Category</tocitem>

<!-- Inside category, list its functions alphabetically -->

<tocitem target="function_3.html">function_3</tocitem>

<tocitem target="function_4.html">function_4</tocitem>

<!-- ... -->

</tocitem>

<!-- Third category, with link to anchor in above page -->

<tocitem target="helpfuncbycat.html#3">Third category</tocitem>

<!-- ... -->

</tocitem>

</tocitem>

<!-- Optional List of Examples, with hyperlinks to examples in other files -->

<tocitem target="mytbx_example.html"

image="HelpIcon.HelpIcon.EXAMPLES">Mytoolbox Examples

</tocitem>

<!-- Optional link or links to your or other Web sites -->

<tocitem target="http://www.mathworks.com"

image="$toolbox/matlab/icons/webicon.gif">

MyToolbox Web Site (Example only: goes to mathworks.com)

</tocitem>

</tocitem>

</toc>

Be sure that file and path names exactly match those of the files and
folders they identify and use upper and lower case letters identically. Your
helptoc.xml can be shorter or longer than the template. The size of the
file depends on the structure of your documentation and how many HTML
files it contains.

Most tables of contents have two to four hierarchical levels. Lower levels can
either specify subheadings within the top-level HTML file or separate HTML
files. A <tocitem> can link to subheadings by specifying anchor IDs for them.
For example, this one,

<tocitem target="mytbx_feature1_example.html#107">Feature 1</tocitem>

specifies a link to the named anchor #107 within the file
mytbx_feature1_example.html. Anchor IDs always start with a pound
sign (#).

5-31



5 Customizing Help and Demos

Create anchors for referencing headings or other HTML content with
<a name="#anchorid">Any content</a> elements. If your documentation
set includes HTML files that are not listed in helptoc.xml, at least one
file found in the table of contents must contain hyperlinks to them, so that
readers can find them. For related information, see “Creating Function and
Block Category Listings” on page 5-38.

To customize the helptoc template file:

1 In the Editor, open the helptoc XML template. You can either:

• Copy the preceding listing and paste it into a new blank document.

• Copy the helptoc_template.xml template example file to your current
folder:

copyfile(fullfile(matlabroot,'help','techdoc','matlab_env', ...

'examples','templates','helptoc_template.xml'),pwd), ...

fileattrib('helptoc_template.xml','+w')

or click here to copy the template. Then, open the copy in the Editor.

2 Save the file as helptoc.xml in your toolbox folder. Saving as a .xml file
enables Editor syntax highlighting.

3 Replace italicized text in the listing with your own content.

4 Resave the helptoc.xml file when you finish making changes.

More About the helptoc.xml File. The info.xml file inserts your toolbox
in the alphabetic listing of toolboxes or blocksets in the Contents pane. The
helptoc.xml defines a hierarchy of entries within it. Each <tocitem> entry
in the helptoc.xml file references one of your HTML help files or anchor IDs
within that product entry. The helptoc_template.xml file that is provided
as an example has the structure most toolboxes use.

You can display icons for your Contents pane entries within your toolbox.
To use standard MathWorks Help browser icons, include any of the following
icons as image attributes for <tocitem> elements.

5-32



Providing Your Own Help and Demos

Icon Use For Image Tag String

Getting
Started
Guides

HelpIcon.GETTING_STARTED

User Guides HelpIcon.USER_GUIDE

Functions HelpIcon.FUNCTION

Blocks HelpIcon.BLOCK

Examples HelpIcon.EXAMPLES

Release
Notes

HelpIcon.RELEASE_NOTES

Demos HelpIcon.DEMOS

To make your documentation consistent with MathWorks documentation,
organize your table of contents entries in the preceding order .

Include the icons as image attributes in top-level TOC entries. If you provide
a roadmap page, also include icons for second-level TOC entries under the
roadmap. Nest tocitem entries for the target chapters or pages within each
such TOC entries, for example:

<tocitem target="get_start_top.html" image="HelpIcon.GETTING_STARTED">About Mytoolbox

<tocitem target="get_start_capabilities.html"> Capabilities </tocitem>

<tocitem> ... </tocitem>

...

</tocitem>

The markup indicates that you have a file called get_start1.html that
begins a getting started guide. The HTML pages it contains appear next,
coded as nested tocitem elements.

Creating Function Reference Pages
Unless you prefer to hide a function from your users, provide an HTML
reference page for it. If your program (.m) files contain help text, you already
have the content you need to add reference pages to the Help browser. If your

5-33



5 Customizing Help and Demos

program files do not yet include help text, consider adding help as a first step.
For details, see “Adding Help for Your Program Files” on page 5-9.

You can create a reference page in an HTML authoring environment by
importing the help text for a function and formatting the text. For example,
you need to remove the percent sign (%) character from the beginning of
each line of text, and make sure that spaces separate words. You can then
format headings, words, phrases, and examples for HTML display. Finally,
you can add image attributes to display graphics such as GUIs, diagrams, and
graphic output from your code, and hyperlinks to See also items and other
related documentation.

Consider creating reference pages from within MATLAB. You can use
the capability of MATLAB to publish program scripts directly to HTML
documents, as described in Chapter 11, “Publishing MATLAB Code”.

To transform help text from a program file into HTML using the publish
command:

1 Copy the help text into a new file, and remove the code that implements
the function.

2 Save this file as a MATLAB script (which has no initial function
declaration).

3 Format the help text using code cell notation.

4 Publish the script as an HTML file.

The following listings illustrate such a transformation for the
upslopeArea.m function from the example Upslope Area toolbox
files to a cell script version of its help text, upslopeArea_help.m.
Find the original program files in the examples folder
matlabroot/help/techdoc/matlab_env/examples/upslope. See the
subfolder matlabroot/help/techdoc/matlab_env/examples/upslope/html
for the cell-scripted versions and the HTML generated from publishing those
files.

After formatting and saving upslopeArea_help.m, the command

publish upslopeArea_help.m

5-34



Providing Your Own Help and Demos

generates a file named upslopeArea_help.html in a subfolder. By default,
this folder is named html, but you can specify a different name for the folder
by configuring the publish command. (Placing all your reference pages in the
same folder simplifies accessing them.)

Original Upslope Area Toolbox Function upslopeArea.m file.

% upslopeArea Upslope area measurements for a DEM

%

% DESCRIPTION

% A = upslopeArea(E, T) computes the upslope area for each pixel of the

% DEM matrix, E. T is the sparse system of linear equations computed

% by flowMatrix; it represents the distribution of flow from pixel to

% pixel. A contains the upslope area for each corresponding pixel of E.

%

% Note: Connected groups of NaN pixels touching the border are treated as

% having no contribution to flow.

%

% REFERENCE

% Tarboton, "A new method for the determination of flow

% directions and upslope areas in grid digital elevation models," Water

% Resources Research, vol. 33, no. 2, pages 309-319, February 1997.

%

% ALGORITHM NOTES

% The Tarboton paper is not very specific about the handling of plateaus. For

% details of how plateaus are handled in this code, see the algorithm notes for

% the function flowMatrix. In particular, see the subfunction

% plateau_flow_weights in flowMatrix.m.

%

% EXAMPLE

% s = load('milford_ma_dem');

% E = s.Zc;

% R = demFlow(E);

% T = flowMatrix(E, R);

% A = upslopeArea(E, T);

% imshow(log(A), [])

%

% See also demFlow, dependenceMap, fillSinks, flowMatrix, postprocessPlateaus.

% Steven L. Eddins

5-35



5 Customizing Help and Demos

% Copyright 2007-2009 The MathWorks, Inc.

function A = upslopeArea(E, T)

requiresIPT(mfilename);

% Right-side vector is normally all ones, reflecting an equal contribution

% to water flow originating in each pixel.

rhs = ones(numel(E), 1);

% Connected groups of NaN pixels that touch the border do not contribute

% to water volume.

mask = borderNans(E);

rhs(mask(:)) = 0;

A = T \ rhs;

A = reshape(A, size(E));

Upslope Area Toolbox Reference Page Script upslopeArea_help.m
file.

%% upslopeArea

% Upslope area measurements for a DEM

%

%% Description

% |A = upslopeArea(E, T)| computes the upslope area for each pixel of the

% DEM matrix, |E|. |T| is the sparse system of linear equations computed

% by |flowMatrix|; it represents the distribution of flow from pixel to

% pixel. |A| contains the upslope area for each corresponding pixel of |E|.

%

% Note: Connected groups of NaN pixels touching the border are treated as

% having no contribution to flow.

%

%% Reference

% Tarboton, "A new method for the determination of flow

% directions and upslope areas in grid digital elevation models," _Water

% Resources Research_, vol. 33, no. 2, pages 309-319, February 1997.

%

%% Algorithm notes

% The Tarboton paper is not very specific about the

5-36



Providing Your Own Help and Demos

% handling of plateaus. For details of how plateaus are handled in this

% code, see the algorithm notes for the function |flowMatrix|. In

% particular, see the subfunction |plateau_flow_weights| in |flowMatrix.m|.

%

%% Example

s = load('milford_ma_dem');

E = s.Zc;

R = demFlow(E);

T = flowMatrix(E, R);

A = upslopeArea(E, T);

imshow(log(A), [])

%% See also

% <demFlow_help.html |demFlow|>, <dependenceMap_help.html |dependenceMap|>,

% <fillSinks_help.html |fillSinks|>, <flowMatrix_help.html |flowMatrix|>,

% <postprocessPlateaus_help.html |postprocessPlateaus|>.

%%

% Copyright 2007-2009 The MathWorks, Inc.

As you see, the script file, upslopeArea_help.m, does not contain the lines
of code that implement the function or comments embedded in that code.
However, the file does contain code for the example of using the function and
all the help text. The See also entries to other toolbox functions are hyperlinks,
which you manually edit to use the syntax <function_name_help.html
function_name>.

Published Upslope Area Toolbox Reference Page
upslopeArea_help.html File. When you show the published
output file with web(upslopeArea_help.html), the beginning of the reference
page resembles the following figure.

5-37



5 Customizing Help and Demos

Near the end of the published reference page, a screen capture from imshow
appears, automatically inserted by publish.

Creating Function and Block Category Listings
To make your reference pages more useful, also include a Functions (or
Blocks, for blocksets) entry for them in the Contents pane of the Help

5-38



Providing Your Own Help and Demos

browser. Expanding one of these entries can display a list of categories.
Each category lists the associated functions (or blocks), along with a brief
description of the category and descriptions of each function (or block).

If you supply reference help files, you can provide a classified listing of them.
HTML help summaries are similar to Contents.m files, but display in the
Help browser. If you already have a Contents.m file that lists all your public
functions, you can use it as the basis for creating a categorical listing in
HTML. If you do not have a Contents.m file, consider creating one to round
out your toolbox. For more information, see “Creating a Help Summary for
Your Program Files” on page 5-12.

To include a Function-by-Category listing, create an HTML page for
it. Use the following example to learn how to edit and mark up your
Contents.m file, and then publish it to HTML. You can name the output file
helpfuncbycat.html, as shown, or whatever you prefer. Within Contents.m,
organize your functions or blocks into categories that you define. Each
category begins a new cell. When you publish the file, each category displays
as a heading and has an anchor ID (from #1 to #n).

The helptoc_template.xml file use category names and anchor IDs in
<tocitem> elements in its reference section. In the template file, the section
for function reference includes links to the categorical listing page, category
anchors within it, and individual reference pages.

The following example shows the section of the helptoc.xml template file
that organizes function reference pages. Publishing helpfuncbycat.m created
anchor IDs #1, #2, #3, ... in output file helpfuncbycat.html to which some
<tocitem> elements refer:

<toc version="2.0">

<!-- ... -->

<!-- Function reference next -->

<!-- The first file lists all of the functions, categorizing them -->

<tocitem target="function_categories.html">Functions

<!-- First category, with link to anchor in above page -->

<tocitem target="function_categories.html#1">First Category

<!-- Inside category, list its functions alphabetically -->

<tocitem target="function_1.html">function_1</tocitem>

<tocitem target="function_2.html">function_2</tocitem>

5-39



5 Customizing Help and Demos

<!-- ... -->

</tocitem>

<!-- Second category, with link to anchor in above page -->

<tocitem target="helpfuncbycat.html#2">Second Category</tocitem>

<!-- Inside category, list its functions alphabetically -->

<tocitem target="function_3.html">function_3</tocitem>

<tocitem target="function_4.html">function_4</tocitem>

<!-- ... -->

</tocitem>

<!-- Third category, with link to anchor in above page -->

<tocitem target="helpfuncbycat.html#3">Third category</tocitem>

<!-- ... -->

</tocitem>

</tocitem>

</toc>

Tip Copy the preceding XML code and paste it into an editor. Delete any
<tocitem> ... </tocitem> lines that you do not need, and replace text
italicized in the listing with your own content. Then, paste your code
intohelptoc.xml, replacing the template content section for reference pages
displayed here.

Italics in the listing indicate strings you need to replace with your own
category, file, function, and anchor names and other text. If you place
help files for functions or blocks in a subfolder of the one containing your
helptoc.xml file, include a relative path in the target attribute for each
<tocitem>. For example, if you place function reference pages in a subfolder
called /reference, you would specify the target as follows:

<tocitem target="./reference/function_1.html">function_1</tocitem>

Adding Function Category Listings: Upslope Area Toolbox Example.
As mentioned previously, a functions-by-category listing works like a
Contents.m file. The following example shows how the Contents.m file for
the Upslope Area toolbox example was marked up and published to create an
HTML page that categorizes the toolbox functions and links each function to
its reference documentation.

5-40



Providing Your Own Help and Demos

Note If you perform the following procedure, first copy the Upslope
Area toolbox Contents.m file to a working folder so you do not
overwrite the file or the files upslope_functions_by_cat.m and
upslope_functions_by_cat.html that following the example generates.

1 Edit the original Upslope Area toolbox Contents.m file:

% Upslope Area Toolbox

% Version 2.0 09-Dec-2009

%

% Requires Image Processing Toolbox(TM).

%

% Flow Direction.

% demFlow - Downslope flow direction for a DEM

% facetFlow - Facet flow direction

% flowMatrix - Linear equations representing water flow

% pixelFlow - Downslope flow direction for DEM pixels

%

% Preprocessing and Postprocessing.

% borderNans - Find NaNs connected to DEM border

% fillSinks - Fill interior sinks in a DEM

% postprocessPlateaus - Replace upslope areas for plateaus with mean value

%

% Hydrological Applications.

% dependenceMap - Dependence map for water flow in a DEM

% influenceMap - Influence map for water flow in a DEM

% upslopeArea - Upslope area measurements for a DEM

%

% Display.

% visDemFlow - Visualize flow directions in a DEM

% visMap - Visualize influence or dependence map for a DEM

%

% Data.

% milford_ma_dem.mat - Sample DEM data provided by USGS and distributed

% via Geo Community (geoworld.com), a USGS data

% distribution partner. The data set is a 1:24,000-scale

% raster profile digital elevation model. Download the

% "Milford" file from the "Digital Elevation Models (DEM)

5-41



5 Customizing Help and Demos

% - 24K Middlesex County, Massachusetts, United States"

% page:

%

% http://data.geocomm.com/catalog/US/61059/526/group4-3.html

%

% natick_ned* - Sample 1/3 arc-second DEM data for a region in Natick,

% Massachusetts. Downloaded from the The National Map

% Seamless Server (http://seamless.usgs.gov/index.php).

%

%

% Steven L. Eddins

% Copyright 2007-2009 The MathWorks, Inc.

2 In the Editor, mark up Contents.m as follows:

a Add a top-level heading, Functions by Category.

b Format the five categories (Flow Direction, Preprocessing and
Postprocessing, Hydrological Applications, Display, and Data) with
double percent signs (%%). Doing so turns the sections into code cells,
which become section headings in HTML.

c Place an asterisk (* ) in front of each function name to mark it as a
bullet in HTML.

d Format each function name as a hyperlink to its own reference page.
In the Upslope example, function reference pages were created by
extracting the function help text to files called functionName_help.m,
which were then published as functionName_help.html.

.

The complete markup of Contents.m into a functions-by-category source
listing looks like the following example:

%% Functions by Category

% Upslope Area Toolbox

% Version 2.0 09-Dec-2009

%

% Requires Image Processing Toolbox(TM).

%

5-42



Providing Your Own Help and Demos

%% Flow Direction

% * <demFlow_help.html |demFlow|> - Downslope flow direction for a DEM

% * <facetFlow_help.html |facetFlow|> - Facet flow direction

% * <flowMatrix_help.html |flowMatrix|> - Linear equations representing water flow

% * <pixelFlow_help.html |pixelFlow|> - Downslope flow direction for DEM pixels

%

%% Preprocessing and Postprocessing

% * <borderNans_help.html |borderNans|> - Find NaNs connected to DEM border

% * <fillSinks_help.html |fillSinks|> - Fill interior sinks in a DEM

% * <postprocessPlateaus_help.html |postprocessPlateaus|> - Replace upslope areas

% for plateaus with mean value

%

%% Hydrological Applications

% * <dependenceMap_help.html |dependenceMap|> - Dependence map for water flow in a DEM

% * <influenceMap_help.html |influenceMap|> - Influence map for water flow in a DEM

% * <upslopeArea_help.html |upslopeArea|> - Upslope area measurements for a DEM

%

%% Display

% * <visDemFlow_help.html |visDemFlow|> - Visualize flow directions in a DEM

% * <visMap_help.html |visMap|> - Visualize influence or dependence map for a DEM

%

%% Data

% * milford_ma_dem.mat - Sample DEM data provided by USGS and distributed

% via Geo Community (geoworld.com), a USGS data

% distribution partner. The data set is a 1:24,000-scale

% raster profile digital elevation model. Download the

% "Milford" file from the "Digital Elevation Models (DEM)

% - 24K Middlesex County, Massachusetts, United States"

% page at http://data.geocomm.com/catalog/US/61059/526/group4-3.html.

% * natick_ned* - Sample 1/3 arc-second DEM data for a region in Natick,

% Massachusetts. Downloaded from the The National Map Seamless Server

% (http://seamless.usgs.gov/index.php).

%

%% Source

% Steven L. Eddins

% Copyright 2007-2009 The MathWorks, Inc.

3 Save your formatted file as upslope_functions_by_cat.m in your current
folder (in this case, called helptests).

5-43



5 Customizing Help and Demos

4 Publish the file, and view the resulting HTML file:

publish upslope_functions_by_cat.m
ans =
C:\myfiles\upslope\helptests\upslope_functions_by_cat.html

web(ans)

5-44



Providing Your Own Help and Demos

Making Your HTML Help Files Searchable
If you want the Help browser to include your documentation in its search
results, provide a search database for your HTML help files. MATLAB can
create a database for you with one command.

The example uses the info.xml file for the Upslope Area toolbox with the
help_location specified as C:\myfiles\upslope\html.

To create the database files:

1 If you have not already done so, add the folder containing your info.xml
file to the search path.

For the example, add the C:\myfiles\upslope folder to the path.

2 Create a searchable database by running

builddocsearchdb('full_path to_help_location')

For the example, assuming your help files are in
C:\myfiles\upslope\html, run:

builddocsearchdb ('C:\myfiles\upslope\html')

You must use the functional form when you call builddocsearchdb (with
the folder location in single quotes inside parentheses).

builddocsearchdb creates a folder named helpsearch in the
help_location folder. For the example, this command creates the folder
C:\myfiles\upslope\html\helpsearch.

Each time you run it, builddocsearchdb generates three files in
helpsearch:

• A file called deletable.

• A file called segments.

• A file having a cfs extension with a name that varies.

3 To verify that your help files can be searched, use the search field in the
Help browser to search for any words in the HTML help files that you
provided in the help_location folder.

5-45



5 Customizing Help and Demos

The next figure shows a search of the Upslope Area toolbox and other
documentation for the terms facet flow.

Summary of Workflow for Providing HTML Help Files
To include your HTML help files in the Help browser Contents pane, you
must create and supply two XML files that the Help browser requires, plus
HTML, and image files you develop for your documentation. You must also
tell recipients of your software how to install these files. The following steps
summarize the steps to take to add your documentation to the Help browser
and distribute it to others.

This procedure uses template XML files that you need to customize. To see
examples of content and how the files are organized, refer to a complete

5-46



Providing Your Own Help and Demos

example of user documentation, the Upslope Area toolbox. To view the
Upslope documentation in the Help browser, click here, or run

addpath(fullfile(matlabroot, 'help','techdoc','matlab_env','examples','upslope'))

The Upslope Area Toolbox now appears in the Contents pane (toolboxes are
alphabetized), as the following graphic displays. The appearance of your
contents pane depends on what products you have installed.

Tip Print or bookmark this page of instructions. Then, when you place your
own HTML pages in the Help browser, you can view the instructions at the
same time.

1 Create or choose a folder for storing your help files. You must have write
access to the folder. You can use the same folder that contains your toolbox
code.

For the Upslope Area toolbox example, name the folder upslope.

2 Add an info.xml file to the folder. This file identifies the folder as one
that contains documentation. To add this file, either click here or follow
these two steps:

a Copy

copyfile(fullfile(matlabroot,'help','techdoc','matlab_env',

'examples','templates','info_template.xml'),pwd)

5-47



5 Customizing Help and Demos

to the folder.

For example, copy the file to upslope.

b Verify that the copied info_template.xml file is writable. If it is
read-only, make it writable with:

fileattrib('info_template.xml','+w')

3 Rename the copy of info_template.xml to info.xml. The file must have
this name.

4 Within your current folder, create a new folder to contain files for
the Help browser Contents. (The info.xml points to this folder as
<help_location>.)

For the example, in mytoolbox, create a folder named html.

5 Make the new folder your current folder.

For the example, cd html.

6 Add a helptoc.xml file to the empty folder. This file organizes the Help
browser table of contents for your toolbox. To add this file, either click
here or follow these two steps:

a Copy the helptoc_template.xml file to your working directory:

copyfile(fullfile(matlabroot,'help','techdoc','matlab_env',

'examples','templates','helptoc_template.xml'),pwd)

to the folder.

For example, copy the file to mytoolbox/html.

b Verify that the copied helptoc_template.xml file is writable. If it is
read-only, make it writable with:

fileattrib('helptoc_template.xml','+w')

7 Rename the copy of helptoc_template.xml to helptoc.xml. It must
have this name.

5-48



Providing Your Own Help and Demos

8 Move the HTML help files you created, as described in “Summary of
Creating and Installing HTML Help Files” on page 5-19, to the folder
containing your helptoc.xml file. Also move to the folder any files that
the HTML files reference, such as image files.

The XML files in the examples/templates folder have no accompanying
HTML files. You can, however, view files for the example Upslope Area
toolbox and learn how its helptoc.xml file organizes HTML documentation
content. For details, see “Organizing Your Documentation” on page 5-20

9 In the Editor, open, modify, and save your info.xml, helptoc.xml files.

For details about changes to make, see:

• “More About the info.xml File” on page 5-27

• “More About the helptoc.xml File” on page 5-32

• “Creating Function and Block Category Listings” on page 5-38

10 Verify that the Help browser Filter by Product preference is set so
that your toolbox appears in the display. To set the Filter by Product
preference:

a Access the Help Preferences pane by selecting
File > Preferences > Help.

b Under Filter by Product, select All products.

11 Add the folder to the search path.

For example, add upslope to the search path.

12 View your HTML help files in the Help browser Contents pane.

5-49



5 Customizing Help and Demos

13 Review the browser display, and verify that there are no errors. MATLAB
automatically validates info.xml files and reports any problems to the
Command Window. For information about addressing the problems, see
“Addressing Validation Errors for info.xml Files” on page 5-61.

14 If you provide your documentation to others, make sure that you include
all files and folders:

• HTML files.

• Images or other files referenced by the HTML files.

• Your info.xml and helptoc.xml files.

• Your search database files, if any.

5-50



Providing Your Own Help and Demos

You can use zip or gzip to create an archive of the folders.

15 Instruct recipients of your documentation how to display it. They need to:

a Unzip the archive containing the help files to any disk location they
prefer to use, and add the help folder to the search path.

b Verify that your toolbox is selected in the Filter by Product Help
preferences. Selecting it enables your toolbox to appear in the Contents
pane of the Help browser.

c If your toolbox still does not appear in the Contents pane, suggest
removing its folder from the search path and then adding back to
the path. The toolbox folder cannot be the current folder during this
operation.

16 Inform your users which documentation features you support. For example:

• If you provided search database files, mention that Help browser search
results will include your documentation.

• Alternatively, you can instruct the users to generate a search database
with the builddocsearchdb function after they set up your files.

5-51



5 Customizing Help and Demos

Adding Demos to the Help Browser

In this section...

“About Creating Demos” on page 5-52

“Providing Demos to Others” on page 5-60

About Creating Demos
You can provide demos for toolboxes you create and make them available
in the Help browser. Demos allow you to present the features of your
toolbox. Adding your demos to the Help browser is the best way to make
them accessible.

There are no requirements about the types of demos you can provide.
However, if you provide the same types of demos that MathWorks products
provide, users of your software are already familiar with using them. See
“Types of Demos” on page 4-25.

This documentation includes an example folder which contains two demos
and refers to a third one that comes with MATLAB. Click here to add this
example folder to your search path, or run the following command:

addpath(fullfile(matlabroot,'help','techdoc','matlab_env','examples','demo_examples'))

The Contents pane of the Help browser displays an entry called Example
Demos under the Other Demos entry. As shown in the following figure, within
that entry you see three demos:

• Formatting Text for Publishing

• Square Waves from Fourier Series

• A video demo from MATLAB, Working in the Development Environment

5-52



Adding Demos to the Help Browser

To remove the demos you just added, take their folder off the search path:

rmpath(fullfile(matlabroot,'help','techdoc','matlab_env','examples','demo_examples'))

5-53



5 Customizing Help and Demos

How to Add Demos

Tip Print or bookmark this page of instructions. Then, when you view your
own HTML pages in the Help browser, you can view the instructions at the
same time.

After you create a demo, you can access the demo from the Help browser
after you perform the following steps:

1 Create demos for your toolbox. See “About Creating Demos” on page 5-52.

You can effectively produce MATLAB code demos using the cell-publishing
features available in the Editor. Publishing creates an HTML file that
includes code, can include figures, describes how to use your code,
and enables you to execute the code from the Help browser. For more
information, see “Overview of Publishing MATLAB Code” on page 11-2.

2 Add the demos files to the Help browser using a special XML file that you
create. See “Workflow for Providing Demos” on page 5-54.

3 Provide the demo files, along with instructions for including these files in
the Help browser. See “Providing Demos to Others” on page 5-60.

The sections that follow refer to a folder of demo examples provided with this
documentation. Adapt the contents of that folder to set up your own demos.

Workflow for Providing Demos
To include demos for your toolbox in the Help browser Contents pane, you
must create and provide a demos.xml file and content for your demos. Specify
a location to MATLAB where the files will reside:

1 Create or choose a folder for storing your demos files. You must have write
access to the folder. If you have created a toolbox, the toolbox folder is a
good location for storing related demos.

For the example, the folder is /demo_examples.

2 Create your demo files by publishing code files, constructing a GUI, or
another method.

5-54



Adding Demos to the Help Browser

3 Put all the demos files you created in the folder.

4 Add the folder for your demos files to the search path.

Note The folder cannot be the current folder when you add it to the path
or the Help browser will be unable to locate your demos.

5 Get the example demos.xml file to use as a template for your own file. Click
here to copy that file to your current folder, or

a Copy
matlabroot/help/techdoc/matlab_env/examples/demo_examples/demos.xml
to the folder for your demos files:

copyfile(fullfile(matlabroot,'help','techdoc','matlab_env','examples','demo_examples','demos.xml')

b Verify that the copied demos.xml file is writable. If it is read-only, make
in writable with:

fileattrib(demos.xml','+w')

6 Edit the content of your copy of demo.xml, changing it to describe and
point to your demo files. For details, see “More About the demos.xml File”
on page 5-56.

7 View your demos.xml file in the Help browser. A new node, Other Demos,
appears at the bottom of the Help browser Contents pane. Expand the
node to view the entries you added.

8 If the Other Demos entry does not appear at the bottom of the Help
Navigator, refresh the Help browser. You can refresh in two ways:

• Right-click on Demos in the Contents pane, and select Refresh Demos.
Doing so refreshes all demos on the search path and can take a moment.

• Remove the folder containing your demos.xml file from the search path
using rmpath. Then, use addpath to add your demos folder back on the
search path.

5-55



5 Customizing Help and Demos

Note The Help browser Filter by Product preference does not provide
an Other Demos entry or list the toolbox demos you add. However, the Help
browser always shows toolbox demos that you add to the search path.

More About the demos.xml File
Within the demos.xml file, the root tag is <demos>. This element includes
one <name>, <type>, <icon> and <description> for the main demo page
for your toolbox.

Include a <demoitem> for each demo you add. Provide multiple categories of
demos by including a <demosection> for each category. Put <demoitem>
entries within that category. If you include any categories, then all demos
must be in categories. In other words, if there is even one <demosection>,
then all demoitem tags must be within demosection tags.

Step 5 of the previous procedure tells how to obtain the example demos.xml
file. This example contains the following XML code:

<?xml version="1.0" encoding="utf-8"?>

<!-- Example demos.xml file for adding demos to the Help browser -->

<!-- Your version of this file must be named "demos.xml" -->

<demos>

<!-- Top-level Demo title in TOC -->

<name>Example Demos</name>

<type>toolbox</type>

<icon>HelpIcon.DEMOS</icon>

<description>These demos are given as examples to

demonstrate how to add demo files for your own toolbox.

</description>

<website>

<a href="http://www.mathworks.com">Link to your Web site here</a>

</website>

<!-- First group of demos begins here -->

<demosection>

<label>Markup Demos</label>

<!-- First demo begins here -->

<demoitem>

5-56



Adding Demos to the Help Browser

<!-- How demo is described in the Contents pane -->

<label>Formatting Text for Publishing</label>

<!-- Type adds a system icon and this name next to demo item -->

<type>M-file</type>

<!-- File to display in the Viewing pane -->

<file>./html/formatted_block_demo.html</file>

<!-- Supply optinoal thumbnail for demo as a .png file -->

<!-- Name it <demo_name>.png -->

<!-- for this demo it is ./html/formatted_block_demo.png -->

</demoitem>

</demosection>

<!-- Second group of demos begins here -->

<demosection>

<label>Computational Demos</label>

<demoitem>

<!-- How demo is described in the Contents pane -->

<label>Sguare Waves from Fourier Series</label>

<!-- Do not add a <type> element if demo is executable -->

<!-- File to execute for "Run this demo" -->

<callback>fourier_demo</callback>

<!-- File to display in the Viewing pane -->

<file>./html/fourier_demo2.html</file>

</demoitem>

</demosection>

<!-- Third group of demos begins here -->

<demosection>

<label>Video Demos</label>

<demoitem>

<!-- Type adds a system icon and this name next to demo item -->

<type>video</type>

<!-- How demo is described in the Contents pane -->

<!-- This is an actual MATLAB Flash video demo -->

<!-- If Flash is installed, it runs in your system bowser -->

<label>Working in The Development Environment (4 min, 7 sec)</label>

<!-- Command or file to execute for "Run this demo" -->

<callback>

playbackdemo('WorkingInTheDevelopmentEnvironment',...

'toolbox/matlab/web/demos');

</callback>

</demoitem>

5-57



5 Customizing Help and Demos

</demosection>

</demos>

Lines starting with <!-- and ending with --> are comments. The code
contains two <demosection> items, each containing one <demoitem>. The
first demo consists of HTML documentation only (a <file> element). The
second one has both HTML documentation and MATLAB code that the
reader can execute (a <callback> element). When you include a callback
element, it must contain an executable command. The reader can execute
that command by clicking Run this demo at the top of the demo page.

The next table describes the demos.xml file listed above, and found in the
folder matlabroot/help/techdoc/matlab_env/examples/demo_examples.

Line XML Tag Notes Value for Example

4 <demos> The root element for a demos.xml
file.

No value

6 <name> Name of your toolbox or collection
of demos that displays under
Other Demos in the Help browser.

Example Demos

7 <type> The product type. Allowable values
are matlab, simulink, toolbox,
blockset, links_targets,
M-file, video, or other.

toolbox

8 <icon> Icon for your demo. You can use a
standard icon or provide a custom
icon by specifying a path to the
icon relative to the location of the
demos.xml file.

HelpIcon.DEMOS

9 to
11

<description> The description that appears in
the Help browser viewing pane, on
the main page for your demos.

Suggested text: “These demos are
given as examples to demonstrate
how to add demo files for your
own toolbox.”

5-58



Adding Demos to the Help Browser

Line XML Tag Notes Value for Example

12 to
14

<website>
<a href=
"url"></a>
</website>

(Optional) Link to a Web site.
For example, MathWorks demos
include a link near the top, on
the right: Product page at
mathworks.com. Can appear
anywhere before the </demos> tag.

<a href=
"http://www.mathworks.com">
Link to your Web site
here</a>

16 <demosection> (Optional) Begins a category of
demos. Each category includes a
<label>, description, and at least
one <demoitem>. Use any number
of categories.

No value required

17 <label> Title shown in Help browser for a
<demosection>.

“Markup Demos”

19 <demoitem> Use one <demoitem> per demo.
Contains <label> and either a
<callback> or a <file> tag.

No value required

21 <label> Title shown for demoitem. “Formatting Text for Publishing”
(1st example demoitem)

23 <file> Name of HTML file describing
the demo, typically produced by
publish. Specify a relative path
from the location of demos.xml.

./html/formatted_block_demo.
html (1st example demoitem)

33 <callback> Name of an executable file or a
MATLAB command. This file runs
when you click Run this demo on
the demo page.

./html/fourier_demo2.
html (for 2nd demoitem example )

None <dependency> (Optional) Specifies other products
required to run the demo, such as
another toolbox. The text must
match a product name specified
in an info.xml file that is on
the search path or in the current
folder.

Not included

5-59



5 Customizing Help and Demos

Supplying Thumbnail Images for Demos. If your demo has an HTML file
to describe it, you can include a thumbnail, a small image typifying the demo.
The demos.xml file does not specify thumbnail images directly.

To include a thumbnail, you only need to supply a .png image file in
the same folder as the HTML file for the demo. Keep the image size to
within 96-by-64 pixels (width-by-height). Give the .png file the same
name as the HTML file. Thus, if the <file> element for your demo is
./html/formatted_block_demo.html, then your thumbnail must be named
formatted_block_demo.png and reside in the same folder.

When you publish a MATLAB script to HTML with the publish command or
Editor File menu item, you get a .png thumbnail file in the correct place with
the correct name by default.

Providing Demos to Others
Anyone who wants to use your demos needs the files and instructions for
using them:

1 Provide recipients with a folder containing:

• Your demo files

• All data, images or other files referenced by the demo files

• Your demos.xml file

2 Instruct recipients to add the folder containing the demos files to the
search path.

3 Inform recipients that the toolbox demos appear under Other Demos, the
last entry in the Contents pane.

5-60



Addressing Validation Errors for info.xml Files

Addressing Validation Errors for info.xml Files

In this section...

“About XML File Validation” on page 5-61

“Entities Missing or Out of Order in info.xml” on page 5-61

“Unrelated info.xml File” on page 5-62

“Invalid Constructs in info.xml File” on page 5-62

“Outdated info.xml File for a MathWorks Product” on page 5-62

About XML File Validation
When MATLAB finds an info.xml file on the search path or in the current
folder, it tries to add information to the Help browser or Start button, as
specified in the info.xml file. MATLAB automatically validates the file
against the supported schema. If there is an invalid construct in the info.xml
file, MATLAB displays an error in the Command Window. The error is
typically of the form:

Warning: File <yourxmlfile.xml> did not validate.
...

An info.xml validation error can occur when you start MATLAB, press the
Start button, or add folders to the search path.

Following, are the primary causes of an XML file validation error and
information to address them:

Entities Missing or Out of Order in info.xml
If you do not list required XML elements in the prescribed order, you receive
an XML validation error:

Often, errors result from incorrect ordering of XML tags. Correct the error by updating

the info.xml file contents to follow the guidelines in the MATLAB help documentation.

The message contains a hyperlink to the page you are now reading. For a
description of the elements you need in an info.xml file and their required
ordering, see “More About the info.xml File” on page 5-27.

5-61



5 Customizing Help and Demos

Unrelated info.xml File
Suppose you have a file named info.xml that has nothing to do with the
MATLAB Help browser or Start button. Because this info.xml file is an
unrelated file, if the file causes an error, the validation error is irrelevant.
In this case, the error is not actually causing any problems, so you can
safely ignore it. To prevent the error message from reoccurring, rename the
offending info.xml file, or ensure that the file is not on the search path or
in the current folder.

Invalid Constructs in info.xml File
If the purpose of the info.xml file is to add information to the Start button
or Help browser, correct the reported problem. Use the message in the error
to isolate the problem or use any validator. One validator you can use is
from the W3C® at http://www.w3.org/2001/03/webdata/xsv. For more
information about the structure of the info.xml file, consult its schema,
located at matlabroot/sys/namespace/info/v1/info.xsd.

Outdated info.xml File for a MathWorks Product
If you have an info.xml file from a different version of MATLAB, that file
could contain constructs that are not valid with your version. To identify an
info.xml file from another version, look at the full path names reported in
the error message. The path usually includes a version number, for example,
...\MATLAB\R14\.... In this situation, the error is not actually causing any
problems, so you can safely ignore the error message. To ensure that the error
does not reoccur, remove the offending info.xml file, or ensure that the file
is not on the search path or in the current folder.

5-62

http://www.w3.org/2001/03/webdata/xsv


6

Workspace Browser and
Variable Editor

• “MATLAB Workspace” on page 6-2

• “Viewing and Editing Workspace Variables with the Variable Editor” on
page 6-24



6 Workspace Browser and Variable Editor

MATLAB Workspace

In this section...

“About the Workspace” on page 6-2

“Opening the Workspace Browser” on page 6-2

“Viewing and Editing Values in the Current Workspace” on page 6-4

“Saving the Current Workspace” on page 6-5

“Viewing and Loading a Saved Workspace and Importing Data” on page 6-7

“Changing and Copying Variable Names” on page 6-8

“Deleting Workspace Variables” on page 6-9

“Viewing Base and Function Workspaces Using the Stack” on page 6-9

“Creating Plots from the Workspace Browser” on page 6-10

“Opening Variables and Objects for Viewing and Editing” on page 6-21

“Setting Workspace Browser Preferences” on page 6-21

About the Workspace
The workspace consists of the set of variables built up during a session of
using the MATLAB software and stored in memory. You add variables to the
workspace by using functions, running M-files, and loading saved workspaces.
For example, if you run these statements,

A = magic(4)
R = randn(3,4,5)

the workspace includes two variables, A and R.

You can perform workspace and related operations using the Workspace
browser. When available, equivalent functions are documented with each
feature of the Workspace browser.

Opening the Workspace Browser
To open the Workspace browser, select Desktop > Workspace in the
MATLAB desktop, or type workspace at the Command Window prompt.

6-2



MATLAB® Workspace

The Workspace browser opens.

You can specify which buttons you want to appear on the toolbar using
preferences. Select File > Preferences > Toolbars to open the dialog box.
Click Help for information using the dialog box.

6-3



6 Workspace Browser and Variable Editor

Viewing and Editing Values in the Current Workspace
The Workspace browser shows the name of each variable or object, the class
(also represented by the icon), its value, and where relevant, the Min, Max,
andMean calculations. MATLAB performs these calculations using the min,
max, and mean functions, and updates the results automatically. These are
other features of the Workspace browser:

• You can display additional columns, including size (dimensions), size
in bytes, and other common statistical calculations such as mode and
standard deviation. To show or hide columns, select View > Choose
Columns. On Microsoft Windows systems, you can right-click any column
header to hide it or to show or hide other columns. To specify the size limit
for calculations and how NaNs are considered, use “Setting Workspace
Browser Preferences” on page 6-21.

• To resize a column of information, drag the column header border. To
reorder columns, drag a column header to a new position.

• You can select the column on which to sort as well as reverse the sort order
of any column. Click a column header to sort on that column. Click the
column header again to reverse the sort order in that column. For example,
to sort on Name, click the column header once. To change from ascending
to descending, click the header again. You cannot sort by the Value column
in the Workspace browser.

• You can directly edit variable values in the Workspace browser Value
column. To edit a value, position the pointer in the Value column at the
row you want to edit, click, and type the new value.

• To view more of the data for a variable, as well as to more easily edit it,
double-click a variable name and it opens in the Variable Editor. For
more information, see “Viewing and Editing Workspace Variables with
the Variable Editor” on page 6-24.

Function Alternative
Use who to list the current workspace variables. Use whos to list the variables
and information about size and class. For example:

>> who

Your variables are:

6-4



MATLAB® Workspace

A S avg_score names scores v y
C a b nn t w1 z
R ans l s1 td x

>> whos
Name Size Bytes Class Attributes

A 4x4 128 double
C 1x3 348 cell
R 3x4x5 480 double
S 1x3 826 struct
a 4x4 128 double
ans 3x4x5 480 double
avg_score 1x1 8 double
b 4x4 128 double
l 4x4 16 logical
names 3x12 72 char
nn 3x3 72 double
s1 1x1 4 single
scores 1x3 24 double
t 1x5 10 char
td 1x1 152 TensileData
v 2x5 20 char
w1 1x1 16 double complex
x 1x1 2 int16
y 1x3 12 uint32
z 1x1 8 double

Use exist to see if the specified variable is in the workspace.

Saving the Current Workspace
The workspace is not maintained across sessions of MATLAB. When you quit
MATLAB, the workspace is cleared. You can save any or all of the variables
in the current workspace to a MAT-file, which is a binary file specifically
for use in MATLAB. You can then load the MAT-file at a later time during
the current or another session to reuse the workspace variables. MAT-files
use a .mat extension.

6-5



6 Workspace Browser and Variable Editor

Note The .mat extension is also used by Microsoft Access application. You
can change the default file association in the Microsoft Windows operating
system to associate MAT-files with either MATLAB or the Access application.

Saving All Variables
To save all of the workspace variables using the Workspace browser:

1 Select File > Save Workspace As from the Workspace browser, or click

the Save button in the Workspace browser toolbar.

The Save to MAT-File dialog box opens.

2 Specify the location and File name. MATLAB automatically supplies
the .mat extension.

3 Click Save.

The workspace variables are saved under the MAT-file name you specified.

Saving Selected Variables
To save some but not all of the current workspace variables:

1 Select the variable in the Workspace browser. To select multiple variables,
Shift+click or Ctrl+click.

2 Right-click, and from the context menu, select Save As.

The Save to MAT-File dialog box opens.

3 Specify the location and File name. MATLAB automatically supplies
the .mat extension.

4 Click Save.

The workspace variables are saved under the MAT-file name you specified.

6-6



MATLAB® Workspace

Another way to save selected variables from the Workspace browser to a
MAT-file is by dragging the selected variables from the Workspace browser
to the Current Folder browser. For more information, see “Creating and
Updating MAT-Files with the Current Folder Browser” on page 7-37.

Specifying the Format When Saving MAT-Files
To specify preferences for saving MAT-files that pertain to compression,
and compatibility between different versions of MATLAB, see “MAT-Files
Preferences” on page 2-131.

Function Alternative
To save workspace variables, use the save function followed by the filename
you want to save to. For example,

save('june10')

saves all current workspace variables to the file june10.mat.

If you don’t specify a filename, the workspace is saved to matlab.mat in the
current folder. You can specify which variables to save, as well as control the
format in which the data is stored, such as ASCII. For these and other forms
of the function, see the reference page for save. MATLAB provides additional
functions for saving information — see “Exporting Data”.

Viewing and Loading a Saved Workspace and
Importing Data
You can view saved variables and load the variables and other data into the
workspace using the Current Folder browser, the Import Wizard, or the load
function.

Viewing Variables in MAT-Files and Loading Them into the
Workspace
Use the Current Folder browser to view the contents of a MAT-file without
loading the file into MATLAB. You can also load selected variables by dragging
them from a MAT-file in the Current Folder browser to the Workspace
browser. For details, see “Using the Current Folder Browser” on page 7-18.

6-7



6 Workspace Browser and Variable Editor

Function Alternative. Use whos with the -file option.

Importing Data
MATLAB provides an Import Wizard to load MAT-files and other forms of
data into the workspace. This procedure briefly describes how to use the
Import Wizard from the Workspace browser to import data from MAT-files.

1 Click the Import Data button on the toolbar in the Workspace browser.

The Import Data dialog box opens.

2 Select the MAT-file you want to load and click Open.

The variables and their values, as stored in the MAT-file, are loaded into
the current workspace. Any variables in the MAT-file that are not in the
workspace are added to the workspace. If any variables being loaded have
the same names as variables in the current workspace, MATLAB asks if
you want to replace the values in the current workspace with the values
in the MAT-file, or cancel.

You can also use the Workspace browser to import data you previously copied
to the clipboard by selecting Edit > Paste to workspace, or use Ctrl+V.
This imports the clipboard data using the Import Wizard.

For more information about the Import Wizard, see “Tips for Using the
Import Wizard”.

Function Alternative for Loading Variables
Use load to open a saved workspace. For example,

load('june10')

loads all workspace variables from the file june10.mat.

Changing and Copying Variable Names
To rename a variable in the workspace, right-click the variable in the
Workspace browser and select Rename from the context menu. Type the new
variable name over the existing name and press Enter.

6-8



MATLAB® Workspace

To copy variable names to the clipboard, select the workspace variables and
select Edit > Copy. You can then paste the names, for example, into the
Command Window. Multiple variables are comma separated.

Deleting Workspace Variables
You can delete a variable, which removes it from the workspace:

1 In the Workspace browser, select the variable, or Shift+click or Ctrl+click
to select multiple variables. To select all variables, choose Select All from
the Edit or context menus.

2 Press the Delete key on your keyboard or click the Delete button on
the Workspace browser toolbar.

3 A confirmation dialog box might appear. If it does, click OK to clear the
variables.

The confirmation dialog box appears if you selected that preference. For
more information, see “Confirmation Dialogs Preferences” on page 2-132.

To delete all variables, select Edit > Clear Workspace from any desktop tool.

Function Alternative
Use the clear function to clear variables from the workspace. For example,

clear A M

clears the variables A and M from the workspace.

Use the clearvars function with the -except option to keep the specified
variables and clear all other variables.

Viewing Base and Function Workspaces Using the
Stack
When you run M-files, MATLAB assigns each function its own workspace,
called the function workspace, which is separate from the base workspace
in MATLAB. To access the base and function workspaces when debugging

6-9



6 Workspace Browser and Variable Editor

M-files, use the Stack field in the Workspace browser. The Stack field is
only available in debug mode and otherwise appears dimmed. The Stack
field is also accessible from the Editor and the Variable Editor. For more
information, see “Finding Errors, Debugging, and Correcting MATLAB Files”
on page 9-104. See also the dbstack and evalin functions.

Creating Plots from the Workspace Browser
You can generate a plot of one or more variables with the Plot Selector tool

on the Workspace browser toolbar. (The appearance of the tool
varies, depending on the variables you select and your history of using it.) The
Plot Selector contains menu items identifying plotting functions available to
you and executes them when you click the graph icons. The following steps
illustrate how the tool works:

1 Create two vector variables:

run = 0:.1:4*pi;
wave = (sin(run.^2) + cos(run).^2);

2 Select one or both variables in the Workspace Browser. You can Shift+click
or Ctrl+click to select multiple variables to plot as x, y, or z components
of a graph.

3 Click the down arrow icon in the Plot Selector on the toolbar. The Plot
Selector menu opens.

6-10



MATLAB® Workspace

4 Scroll to the graph type you want to display and click the icon on its left
side. The icon highlights when you hover over it.

A figure window opens with a graph of the selected variable or variables,
using the plotting function you just chose.

6-11



6 Workspace Browser and Variable Editor

The Plot Selector GUI remains open until you click a desktop component or
another window. This enables you to experiment with plot types without
reopening the GUI each time.

Working with the Plot Selector GUI
You can interact with the Plot Selector in many ways. Learn about using it by
viewing this video demo. Also, read the following table to better understand
what you can accomplish with the Plot Selector and how to do it.

What You Can Do How To Do It

Identify variables to
graph.

Select a variable of numeric type in the
Workspace Browser. To add variables to your
selection, Shift+click or Ctrl+click.

Plot selected
variables
immediately using
the default graph
type.

Click the Plot Selector icon; a graph of the type it
displays will plot using the selected variables.

6-12



MATLAB® Workspace

What You Can Do How To Do It

Plot selected
variables after
choosing a graphing
function.

Click the arrow to the right of the Plot
Selector button. The GUI opens for you to choose
a graph type. Create plot by clicking the chosen
item’s picture icon.

Interchange two
variables before
graphing them.

Click the Reverse Input Variable Order button
. The two function arguments the item

displays interchange. The button appears only
when you select two variables.

Identify the graphing
functions you can
currently use to
create a plot.

With one or more selected variables, select the
first tab, Plots for:<variables>
and do either of the following:

• Scroll through the menu or navigate through
it with up/down arrow keys.

• Enter a search term in the search bar; only
those menu items and categories containing
the search string will display.

Identify available
graphing functions.

With zero or more variables selected, select the
second tab, All plots and do either of the
following:

• Scroll through the menu or navigate through
it with up/down arrow keys

• Enter a search term in the search bar; only
those menu items and categories containing
the search string display

6-13



6 Workspace Browser and Variable Editor

What You Can Do How To Do It

Add a graph type to
Favorites.

In either tab:
• Click the star to the right of a menu item
and do any of the following:

• Right-click a menu item and select Add to
Favorites.

• Right-click a menu item and select Copy, and
then right-click within Favorites and select
Paste.

• Drag a menu item from its category to
Favorites.

All of these actions create a copy the item in
Favorites without removing it from its category.

Remove a graph type
from Favorites.

In the Favorites category of either tab do either
of the following:

• Click the star at the right side of a menu
item

• Right-click a menu item and select Remove
Favorite

You cannot drag a menu item out of Favorites.

Change the order of
menu items within a
category.

Click a menu item outside the graph icon and
drag it to a new position within its category.

Move a menu item to
a different category.

Click a menu item outside the graph icon and
drag it to a new category. Dragging an item
away removes that item from the category it was
in. This gesture does not apply to items within
Favorites.

6-14



MATLAB® Workspace

What You Can Do How To Do It

Get help for a
graphing function.

On either tab, hover mouse pointer over a menu
item. A syntax description pops up next to the
item. To see the complete function reference
page, click the More Help link in the description
header.

Enable a dimmed
menu item.

Select one or more variables appropriate for
calling the dimmed function. Then, open the Plot
Selector tool again. See “Selecting Appropriate
Variables” on page 6-15 and “Determining What
Inputs a Graphing Function Needs” on page 6-16.

Manually execute or
modify a plotting call.

Drag a menu item (even if it is dimmed) to the
CommandWindow or the Editor; the code for that
plot displays and you can edit it. See “Editing a
Plot Selector Graphing Command” on page 6-17.

Display the Plot
Selector as a window.

Open the Plot Selector, click the grab bar
at the center top, and drag the GUI to

where you want it on the screen. That window
closes if you click another MATLAB window. The
window remains open if you focus on a window
of another application.

Access the Plot
Catalog.

Click the Catalog link at the bottom of the Plot
Selector tool.

Selecting Appropriate Variables
If you select insufficient or inappropriate variables for a graph type, its menu
item is dimmed on the All plots Plot Selector tab. The dimmed items do not
appear at all on the Plots for: tab. Dimmed and missing Plot Selector menu
items indicate that you cannot use the function for plotting the selected data
via the tool. Reasons why a function is not available include:

• You selected a variable having the wrong class for graphing (it is not a
numeric type).

• The graphing function requires additional inputs (for example, scatter
requires two vectors).

6-15



6 Workspace Browser and Variable Editor

• The graphing function requires fewer inputs than you selected (for example,
plot cannot handle three vectors)

• Your selected variable has inappropriate type or dimensions (for example,
matrices displayed by feather must be complex).

• You selected variables in the wrong order (for example, selecting scalar n
and then matrix Z to contour(n,Z) instead of contour(Z,n)).

If you select variables that no function can display, the Plot Selector button
label changes to No valid plots for:<variable> . If you click
the button, you see the message “No plot available for selection. Change your
variable selection or click the All plots tab to browse for plots.”

Determining What Inputs a Graphing Function Needs
When a Plot Selector menu item is unavailable (dimmed) in the All plots tab,
you can learn why by viewing the pop-up help for that function. Suppose
you want to make a semilogy graph.

In the All plots tab, you can do several different things:

1 Create a nonnumeric variable, for example, a string.

name = 'abcd';

2 Select name in the Workspace Browser and open the Plot Selector tool by
clicking its down arrow.

3 Click the All plots tab in the Plot Selector window.

4 Scroll to the semilogy menu item (all items are dimmed) and hover the
mouse pointer over the item.

A help message appears that includes a note specifying what inputs the
semilogy function accepts. The pop-up help window contains a white box
that describes the function’s input requirements, as shown in the following
figure.

6-16



MATLAB® Workspace

The message helps you to understand what arguments the semilogy
function supports.

A Help Window opens whenever your mouse pointer lingers over a menu
item, but information set off in a white box only appears when the function is
dimmed because it cannot generate a graph of the currently selected variables.

Editing a Plot Selector Graphing Command
Even when the Plot Selector tool cannot successfully make a graph, it can
still give you a starting point for doing so. You can drag any Plot Selector
menu item into the Command Window to see the code it generates. Once the
plotting command displays in the Command Window, it does not execute until
you press Enter, enabling you to edit its arguments first. Dragging dimmed
items works the same as dragging undimmed items. This enables you to fix
problems due to selecting the wrong variables or selecting them in the wrong
sequence. You can also add arguments to the plotting command, for example
to specify a linespec or a colorspec for functions that can use them.

The following example illustrates how to drag a dimmed Plot Selector menu
item, drop it into the Command Window, and edit the plotting command
before executing it.

1 In the Command Window, enter

alist = '1 2 3 4 5 6 7 8 9 10';
ilist = [1 2 3 4 5 6 7 8 9 10];

6-17



6 Workspace Browser and Variable Editor

2 Assume that you want to create a graph of ilist but instead you select the
string variable alist in the Workspace Browser. When you click the Plot
Selector, it displays this error message.

You can go on to plot ilist by continuing as follows.

3 Click the All Plots tab and scroll to semilogy. The menu item is dimmed.

4 Press the mouse button over semilogy and drag it to the command window,
as shown here.

6-18



MATLAB® Workspace

5 Release the mouse button in the Command Window The following line of
code appears there:

>> semilogy(alist,'DisplayName','alist');figure(gcf)

If you press Enter, an error displays because alist is not a proper calling
argument:

??? Error using ==> semilogy
Invalid first data argument

6-19



6 Workspace Browser and Variable Editor

6 Instead, change the code to the following, substituting ilist for alist:

semilogy(ilist,'DisplayName','ilist');figure(gcf)

This call works with the changed arguments and generates the following
graph after you press Enter.

You can also edit the plotting command to add other arguments, including
parameter/value pairs, to customize the graph.

For More Information
If you want to use the Plot Selector to create a graph for a subrange of a
vector or a matrix, you can open the variable in the Variable Editor, select the
range of data you want to graph, and open the Plot Selector from the Variable
Editor toolbar. All data for the graph must all come from one variable and the
subrange to plot has to be a contiguous selection.

You can add titles, axis labels, legends and other annotations to graphs
that the Plot Selector makes. For more information about graphing data
and customizing plots, see the following topics in the MATLAB Graphics
documentation:

6-20



MATLAB® Workspace

• “Figures, Plots, and Graphs”

• “Plotting Tools — Interactive Plotting”

• “Basic Plotting Commands”

• “Creating Specialized Plots”

Opening Variables and Objects for Viewing and
Editing
In the Workspace browser, double-click a variable and it opens in the Variable
Editor where you can view and edit the contents of the variable. See “Viewing
and Editing Workspace Variables with the Variable Editor” on page 6-24
for more information.

Some toolboxes allow you to double-click an object in the Workspace browser
to open a viewer or other tool appropriate for that object. For details, see the
toolbox documentation for that object type.

Setting Workspace Browser Preferences
The Workspace browser displays statistical calculations for variables. Use
preferences to restrict the size of arrays on which you perform calculations
and to specify if you want those calculations to include or ignore NaNs.
Select File > Preferences > Workspace to open the dialog box. Make your
changes and click OK.

6-21



6 Workspace Browser and Variable Editor

Specify Maximum Array Size on Which to Compute Statistics
If you show statistical columns in the Workspace browser, and if you work
with very large arrays, you might experience performance issues when the
data changes as MATLAB updates the statistical results. In that event, show
only the columns of interest to you and hide those you do not need.

Another step you can take is specify via a preference that the Workspace
browser not perform statistical calculations on the largest arrays. Use the
arrows to change the value of the maximum array size for which you want
the Workspace browser to perform statistical calculations. The default value
is 500,000 elements. Any variable exceeding that size reports <Too many
elements> instead of statistical results.

6-22



MATLAB® Workspace

Handling NaN Values in Calculations
If your data includes NaNs, you can specify that the statistical calculations
consider the NaNs or ignore the NaNs. For example, if a variable includes
a NaN and the preference is set to Use NaNs when calculating statistics,
the values for Min, Max, Var and some others will appear as NaN, although
Mode, for example, shows a numeric result. With the preference set to Ignore
NaNs whenever possible, numeric results appear for most of the statistical
columns includingMin andMax; Var, however, is still reported as NaN.

For more information about statistical values in the Workspace browser, see
“Viewing and Editing Values in the Current Workspace” on page 6-4.

6-23



6 Workspace Browser and Variable Editor

Viewing and Editing Workspace Variables with the
Variable Editor

In this section...

“About the Variable Editor” on page 6-24

“Opening the Variable Editor” on page 6-24

“Working with Different Types of Data in the Variable Editor” on page 6-27

“Navigating and Editing Shortcut Keys for the Variable Editor” on page 6-34

“Changing Size, Content, and Format of Variables in the Variable Editor”
on page 6-35

“Cut, Copy, Paste, and Clear Contents in the Variable Editor” on page 6-36

“Other Variable Editor Operations” on page 6-40

“Creating Graphs and Variables, and Data Brushing in the Variable Editor”
on page 6-41

“Preferences for the Variable Editor” on page 6-46

About the Variable Editor
The Variable Editor is a desktop component that lets you display variables
in the current workspace. Use it to view and edit values of one or
two-dimensional arrays, character strings, cell arrays, structures, and objects
and their properties. You can also view the contents of multidimensional
arrays. Edits you make in the Variable Editor immediately update the
variable in the workspace. It also supports copying and pasting of data values.

Opening the Variable Editor
To open the Variable Editor from the Workspace browser, perform these steps:

1 If you do not have any, create some workspace variables, for example:

A = magic(4);
x = 0:.1:4*pi;
y = sin(x);

6-24



Viewing and Editing Workspace Variables with the Variable Editor

s = sprintf('This is yext\nwith two lines');

2 In the Workspace browser, select the variable you want to open. Use
Shift+click or Ctrl+click to select multiple variables, or use Ctrl+A to
select all variables to open.

3 Click the Open Selection button on the toolbar. For one variable, you
can also open it by double-clicking it.

The Variable Editor opens, displaying the values for the selected variable.
The class and size of the value appear below the toolbar, and for some
classes, include a link to the help for that class.

)�
�%�����������
%
�%������
�����
����������������
��
	��

)��������%
���
������������
��

)�
�%���������������
�!
��������
�������������
������5�����
���������

�
�%��6
���)�
�%���
���%���������������
��
�%�������������	��

Repeat the steps to open additional variables in the Variable Editor. Access
each variable via its tab at the bottom of the window, or use the Window
menu.

Changes you make to variables via the Command Window or other operations
automatically update the information for those variables in the Variable
Editor.

6-25



6 Workspace Browser and Variable Editor

Note MATLAB software does not limit the maximum number of elements in
a variable that you can open in the Variable Editor. The limit is based on your
operating system or the amount of physical memory installed on your system.

Keyboard Alternatives
To open a variable in the Variable Editor, use openvar with the name of the
variable you want to open as the argument. For example, type

openvar('A')

You need to enclose the name of the variable name in single quotes, because
the Variable Editor requires strings, not variable references. It needs the
name of the variable so MATLAB can notify it when the variable changes
value, disappears, or goes out of scope. If you were to type openvar(A)
instead of openvar('A'), the Variable Editor would receive the value of A
instead of its name. However, openvar varname and openvar 'varname'
both work, as the function assumes string arguments when using command
syntax. See “Command vs. Function Syntax” in the MATLAB Programming
Fundamentals documentation for more information.

MATLAB opens A in the Variable Editor.

To see the contents of a variable in the workspace, type the variable name at
the Command Window prompt. For example, type

A

and MATLAB returns

A =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

6-26



Viewing and Editing Workspace Variables with the Variable Editor

Working with Different Types of Data in the Variable
Editor

• “Cell Arrays — Viewing and Editing in the Variable Editor” on page 6-27

• “Structures — Viewing and Editing in the Variable Editor” on page 6-28

• “Objects and Their Properties — Viewing and Editing in the Variable
Editor” on page 6-30

• “Multidimensional Arrays — Viewing in the Variable Editor” on page 6-33

Cell Arrays — Viewing and Editing in the Variable Editor
You can view and edit the content of cell arrays in the Variable Editor. In
the Variable Editor, double-click an element of a cell array to open it as its
own Variable Editor document. You can then view and edit the contents of
that element. The following illustrations show a 1-by-3 cell array, C, and the
contents of C{1,1}. When viewing an element in a cell array, for example,
C{1,1}, use the Up button to go to its cell array, for this example, C.

6-27



6 Workspace Browser and Variable Editor

Structures — Viewing and Editing in the Variable Editor
You can view and edit the content of structures in the Variable Editor. In
the Variable Editor, double-click an element of a structure to open it as its
own Variable Editor document. The following illustrations show a 1-by-3
structure, S and the result of double-clicking S(1,2), which displays the
contents in its own new document.

6-28



Viewing and Editing Workspace Variables with the Variable Editor

The information shown for the element of the structure is like what the
Workspace browser displays: Field, Value, Size and other information.
To show or hide columns, select View > Choose Columns. On Microsoft
Windows systems, you can right-click any column header to hide it or to show
or hide other columns. Click a column header to sort by that column, and click
again to reverse the sort order. When viewing an element in a structure,
for example, S(1,2), use the Up button to view the structure, for this
example, S. The button helps you navigate in the Variable Editor when there
are many variables open.

To edit an element, you can click the value and change its value. Or double
click the element; a new Variable Editor document containing it opens. Click
the value and then change it. The following illustration shows the result of
double-clicking the grade field for S(1,2), where you can change its value.
You can use the Up button go up from the field to view the element. For
example, when viewing S(1,2).grade, click the Up button to view S(1,2).

6-29



6 Workspace Browser and Variable Editor

Objects and Their Properties — Viewing and Editing in the
Variable Editor

• “Viewing Object Properties in the Variable Editor” on page 6-30

• “Editing Property Values in the Variable Editor” on page 6-31

• “Getting Help for Objects and Properties from the Variable Editor” on page
6-33

Viewing Object Properties in the Variable Editor. In the Variable Editor,
you can view and edit properties of many MATLAB objects you create. When
you open an object in the Variable Editor, it displays Property, Value, Size,
and other information. To show or hide a column, right-click the column
header. To sort by a column, click that column header; to reverse the sort
order, click the column header again. You can view help for the class by
clicking the class name link. The Variable Editor has special attributes for
timeseries objects; for more information, see “Viewing Time Series Objects”
in the MATLAB Data Analysis documentation.

The following illustration shows the sensorArray object of the sads class, in
the Variable Editor. For more information about this example, see “Example
of Help for a Externally Supplied Class” on page 5-14.

6-30



Viewing and Editing Workspace Variables with the Variable Editor

Additional icons, images of locks, denote protected and private
properties of an object, indicating you cannot edit the values. The following
illustration shows an MException object, ME, with the private properties
identifier and message.

3%��������������
���������������	�

���
����������������������#����
���������!�	�%�����
������������
	���

Editing Property Values in the Variable Editor. To edit a property value
while viewing the object, click the value field and edit its contents, as shown
in the following illustration.

6-31



6 Workspace Browser and Variable Editor

Alternatively, double-click the value, which displays the value in its own
document where you can more easily view and edit it. In the following
illustration, the sensorArray.Spacing property opens in its own document
when you double-click it. When viewing a property, use the Up button to
view the object, for this example, sensorArray. This button can help you
navigate in the Variable Editor when there are many variables open.

If the Variable Editor window is small, the Up button might not be visible. To
get to it, click the >> More Menu button on the right side of the toolbar and
choose Go Up One Level from the menu.

6-32



Viewing and Editing Workspace Variables with the Variable Editor

Getting Help for Objects and Properties from the Variable Editor. For
most classes supplied by The MathWorks, when you click the link to the class
name, for example, char, the reference page displays in the Help browser.
For user-created classes, help comments supplied in the class definition file
display in HTML format in the Help browser. For more information, see
“Adding Help for Classes You Create” on page 5-13.

Multidimensional Arrays — Viewing in the Variable Editor
You can view the contents of multidimensional arrays in the Variable Editor.
When you open a multidimensional array in the Variable Editor, it does not
have usual grid structure, because multidimensional arrays do not fit that
format. You cannot double-click an element in a multidimensional array
to edit it. The following illustration shows R = rand(3,4,5) opened in the
Variable Editor.

You can view subsets of multidimensional arrays as long as the indexing
expression evaluate to either a 1-D vector or a 2-D matrix. For example,
R(2,:,:) , R(:,2,:), and R(:,:,2) display as follows.

6-33



6 Workspace Browser and Variable Editor

You cannot edit subsets of multidimensional matrices. Because you can index
into matrices in so many ways, the Variable Editor can incorrectly identify
subscripts of variable elements that you might change. To avoid changing
the wrong data elements, the Variable Editor prevents you from editing
multidimensional matrices.

Navigating and Editing Shortcut Keys for the
Variable Editor
Use the following shortcut keys (sometimes called hot keys) to move among
elements in the Variable Editor. Navigating in the Variable Editor is much
like navigating in the Microsoft Excel application.

Key Result

Enter Commit any changes to the element and move
to next element. “Preferences for the Variable
Editor” on page 6-46 let you specify what the next
element is (the default is down)

Tab Move right

Within a selection, also moves from the last
column to the first column in the next row

Shift+Enter or
Shift+Tab

Move in opposite direction of Enter or Tab

6-34



Viewing and Editing Workspace Variables with the Variable Editor

Key Result

Page Up Move up m rows, where m is the number of visible
rows

Page Down Move down m rows, where m is the number of
visible rows

Home Move to column 1

Ctrl+Home Move to row 1, column 1

Shift+Home Select to column 1

End Move to last column in current row

F2 (Ctrl+U on Apple
Macintosh platforms)

Edit current element, positioning cursor at the
end of the element

Changing Size, Content, and Format of Variables in
the Variable Editor
To increase the size of an array, scroll to the desired element in the variable
and enter a value. The array automatically expands to accommodate the new
value. Empty elements fill with zeros if numeric, or empty arrays if a cell
array. To decrease the size of an array, select the rows or columns that you
want to remove by clicking in the row or column header. Clicking a header
selects the entire row or column. Then right-click, and select Delete from the
context menu. Similarly, you can update arrays in structure and objects.

To change the value of an element in the Variable Editor, click the element
and type a new value. Press Enter, or click another element to effect the
change. You can specify where the cursor moves to after you press Enter—
see “Preferences for the Variable Editor” on page 6-46.

If you want to change the display format for the Variable Editor, select the
View menu and choose a format. To change the default format for future
use, use the Preferences dialog. For more information, see “Preferences for
the Variable Editor” on page 6-46.

If you open an existing MAT-file and change it using the Variable Editor, save
that MAT-file if you want the changes to be permanent. For instructions, see
“Saving the Current Workspace” on page 6-5.

6-35



6 Workspace Browser and Variable Editor

Cut, Copy, Paste, and Clear Contents in the Variable
Editor
You can cut or copy selected elements, rows, and columns in an array and
paste them to another position in that or another open array. To select a
column or row, click the row or column header (the element that shows the row
or column number). Use Shift+click to choose contiguous elements, rows, or
columns in the array, or Ctrl+A to select all elements. For the cut, copy, and
paste operations, use the Editmenu, the context menu, or the toolbar buttons.
You can undo the last operation you performed in the Variable Editor.

When you cut elements, the value of each element you cut becomes 0 (if
numeric) or [] (if a cell array). After cutting, select the elements whose value
you want to replace with the cut elements and then choose Edit > Paste. If
the shape of the elements you cut differs from the shape of the elements into
which you are pasting, the Variable Editor pastes all the elements. Either
it expands the size of the selection you made, or it expands the array size to
allow all the elements you are pasting. Pasting copied elements is the same
as pasting cut elements, but the elements copied maintain their value rather
than becoming 0 or [].

To make the value of elements 0, select elements, rows, or columns and then
select Edit > Clear Contents. Clearing differs from cutting because the data
from the selected elements does not move to the clipboard or modify it.

6-36



Viewing and Editing Workspace Variables with the Variable Editor

Example: Copying and Pasting Array Elements
In this example, you copy two elements. When you select one element for
pasting, it replaces two elements.

1 Create a matrix variable.

A = magic(4);

2 Select rows 3 and 4 or column 2 by clicking 7 (A(3,2)) and then
Shift+clicking 14 (A(4,2)). Right-click the selection and select Copy from
the context menu. You can also press Ctrl+C or chose Copy from the Edit
menu to copy the values.

3 Select 9 (A(3,1)) and select Paste from the context menu or Edit menu,
or type Ctrl+V.

6-37



6 Workspace Browser and Variable Editor

The column vector you copied ([7;14]) replaces the contents of rows 3 and
4 in column 1 (which had been [9,4]), even though you only selected the
element containing 9. That is, the shape of the copied elements determines
which values get replaced, starting at the upper left element.

Example: Cutting and Pasting Array Elements
select two rows and cut their contents. Select one row for pasting. The
Variable Editor expands the array size, adding a row to accommodate all cut
elements. The values of the elements you cut becomes 0.

1 Create a matrix variable.

6-38



Viewing and Editing Workspace Variables with the Variable Editor

A = magic(4);

2 Select rows 2 by clicking its row number, then Shift+click the row number
for row 3 to select both rows. Right-click the selection and select Cut from
the context menu. You can also press Ctrl+X or chose Cut from the Edit
menu to cut the values and copy them to the clipboard.

The values in the cut rows all become 0 as a result of the cut operation.

3 Select row 4 entirely and select Paste from the context menu or Edit
menu, or type Ctrl+V.

The contents of the cut rows replace row 4 and extend the matrix to have
an additional row.

6-39



6 Workspace Browser and Variable Editor

Other Variable Editor Operations

Insert and Delete in the Variable Editor
You can insert and delete elements, rows, and columns in arrays in the
Variable Editor. When you select Edit > Insert, or Edit > Delete, a dialog
box appears in which you specify rows, columns, or elements. When you
delete elements, the Variable Editor prompts you to provide, the direction for
shifting existing elements.

Undo and Redo in the Variable Editor
You can undo the last action you performed in the Variable Editor, or redo
a change after choosing undo. Select Edit > Undo or Edit > Redo. The
actions supported are the following:

• A change to a value you make by editing it in the Variable Editor

• Cutting

• Pasting

• Inserting

• Deleting

• Clearing contents

• Pasting data from the Microsoft Excel application.

6-40



Viewing and Editing Workspace Variables with the Variable Editor

Exchanging Data with the Command Window
You can copy data from an array in the Variable Editor and paste it into the
Command Window. You can also copy a value from the Command Window
and paste it into an element in the Variable Editor. Be sure that the data
types are compatible. For example, you cannot paste text from the Command
Window into a numeric array in the Variable Editor.

Creating New Workspace Variables from the Variable Editor
You can also create new variables from a selected element, data range, row, or
column in an array in the Variable Editor. Right-click, and from the context
menu, select Create Variable from Selection, or do the same from the
Edit menu.

Exchanging Data with the Microsoft Excel Application
You can cut or copy cells from the Microsoft Excel application and paste them
into the Variable Editor—use Edit > Paste from Excel. You can also cut
or copy elements from an array in the Variable Editor and paste them into
the Excel® application.

Be sure that the data types are compatible. For example, you cannot paste
text from the Excel application into a numeric array in the Variable Editor.

Creating Graphs and Variables, and Data Brushing
in the Variable Editor
The Variable Editor, like the Workspace Browser, provides several methods
for creating graphs without typing plotting commands. Once a graph displays,
you can “brush” either the graph or array elements in the Variable Editor to
see which observations correspond in the other.

Generating Graphs Automatically

You can create graphs from selected variables in the Variable Editor. To
create a graph, select a data range, row, or column in an array, and choose a
graph type in one of the ways described in the following bullets. MATLAB
examines the selected data and determines which kinds of graphs can display

6-41



6 Workspace Browser and Variable Editor

it. In some cases, MATLAB performs data conversion, such as using cell2mat
to transform cell array data—which cannot be plotted directly—to matrix
data. For more information, see “Plotting Process” in the MATLAB Getting
Started Guide.

You can graph selections of numeric data and selected objects from the
Variable Editor in three ways, illustrated here:

• Select data and choose from a list of graph types from the Graphics menu.

• Select data, right-click, and choose from a list of graph types from the
context menu.

6-42



Viewing and Editing Workspace Variables with the Variable Editor

The types of graphs available on the context menu and the Graphics
menu are the same.

• Select data and click the Plot Selector toolbar icon to generate the type of
plot it displays.

6-43



6 Workspace Browser and Variable Editor

Assuming that you select the same graph type, all three methods generate
identical plots of the selected data in the current or a new figure window.

The Plot Selector is the most flexible of the three methods. It lists more graph
types you can currently make and, in a separate tab, all graph types available

6-44



Viewing and Editing Workspace Variables with the Variable Editor

to you. It also provides function help, and lets you prioritize graph types as a
list of favorites. The following illustration compares it to the Graphics menu.

�������	
���

����
�������� )!���1� �
� ���������������%������

��1������%����473

�������
����
����
����!���

6
���%������!
���������������

)"��%����
������
��

��������6
�������
��

������
�����	�����

��������
"����"

For more information about using the Plot Selector, see “Creating Plots from
the Workspace Browser” on page 6-10. The plot selector supports certain
toolbox plotting functions in addition to those in MATLAB; see “Plot Selector
Supports Additional Toolboxes” for more information.

Brushing Data in Linked Graphs
Data brushing is a technique for exploring where specific data observations
fall in a set of graphs and tables. It helps you to visually identify relationships,

6-45



6 Workspace Browser and Variable Editor

outliers, trends, and noise that can be difficult to determine with numerical or

statistical methods. Use the Data Brushing Tool on the Variable Editor
and figure toolbars to mark specific observations (or ranges of them) in the
Variable Editor and on graphs. You can remove brushed observations or
save them to new variables.

If a variable you brush in the Variable Editor is plotted on a graph, selecting
the Data Brushing tool and brushing array elements in the Variable Editor
highlights those values in the graph displaying the variable you brush.
Likewise, brushing observations on a linked plot highlights them in the
Variable Editor. For data brush to communicate between the two windows,

the figure must be in Linked Plot mode. Linked Plot mode connects a
graph’s XData, YData and ZData to its data sources in the current workspace.
For more information, see “Data Brushing with the Variable Editor” in the
MATLAB Data Analysis documentation and the reference pages for brush
and linkdata.

Preferences for the Variable Editor
To set preferences for the Variable Editor, select
File > Preferences > Variable Editor. The Preferences dialog box opens
showing Variable Editor Preferences.

Format
Specify the default array output format of numeric values displayed in the
Variable Editor. This format preference affects only how numbers display,
not how MATLAB computes or saves them. For more information, see the
reference page for format.

Editing
You can specify where the cursor moves to after you type an element and
press Enter:

• If you want the cursor to remain at the element where you typed, clear the
Move selection after Enter check box.

• If you want the cursor to move to another element, select the Move
selection after Enter check box. Choose the Direction to specify how

6-46



Viewing and Editing Workspace Variables with the Variable Editor

you want the cursor to move. For example, if you want the cursor to move
right one element after you press Enter, select Right.

International Number Handling
You can specify the decimal format of numbers you cut or copy from the
Variable Editor when you paste them into text files or other applications. The
Decimal separator for exporting numeric data via system clipboard
edit field is by default "." (period). If you are working in or providing data to
a locale that uses a different character to delimit decimals, type that character
in this preference and click OK or Apply. This preference has no effect on
numeric data copied from and pasted into MATLAB documents or into the
Command Window. Within MATLAB, decimal separators are always periods.

6-47



6 Workspace Browser and Variable Editor

6-48



7

Managing Files in MATLAB

• “Introduction to Managing Files in MATLAB” on page 7-2

• “Understanding File Locations in MATLAB” on page 7-4

• “Working with Files and Folders” on page 7-12

• “Finding Files and Folders” on page 7-27

• “Creating, Opening, Changing, and Deleting Files and Folders” on page
7-36

• “Comparing Files and Folders” on page 7-50

• “Making Files and Folders Accessible to MATLAB” on page 7-66

• “Using the MATLAB Search Path” on page 7-72

• “Related Topics for Managing Files” on page 7-84



7 Managing Files in MATLAB®

Introduction to Managing Files in MATLAB

In this section...

“Ways to Manage MATLAB Files” on page 7-2

“Tools for Managing Files” on page 7-2

Ways to Manage MATLAB Files
MATLAB functions and desktop tools help you:

• Find a file you want to open, edit, load, or run in MATLAB

• Organize your files

• Obtain information about the contents and status of a file

• Ensure that MATLAB can access a file so that you can run or load it.
Typically, any file you access must be in the current folder or in a folder
that is on the MATLAB search path.

For a broad introduction, see the “Managing Files in MATLAB” topic in the
MATLAB Getting Started guide.

Tools for Managing Files
You can create, open, close, read, write, rename, move, and delete files and
folders using MATLAB functions. For a listing of them and links to their
reference pages, see “File Operations”.

MATLAB also provides many interactive tools for working with files. Click
the name of a tool in the following table to learn more about it.

Desktop Tool Description

Current Folder
Browser

View files, perform file operations such as opening, finding files and viewing
file content, and managing and tuning your files.

Find File tools Locate files by folder, file type, size, text within them, and other criteria.

7-2



Introduction to Managing Files in MATLAB®

Desktop Tool Description

Comparison Tool View line-by-line differences between two files.

Editor Create, edit, debug, and analyze files containing MATLAB language
statements (functions and scripts), and view and edit other text files.

File Exchange Access a repository of files, created by users for sharing with other users,
at the MathWorks Web site.

7-3



7 Managing Files in MATLAB®

Understanding File Locations in MATLAB

In this section...

“Important MATLAB Folders” on page 7-4

“Path Names in MATLAB” on page 7-7

Important MATLAB Folders
When you work with files and folders, be aware of key locations that MATLAB
uses.

The Current Folder
The current folder is a reference location that MATLAB uses to find files. This
folder is sometimes referred to as the current directory, current working folder,
or present working directory. It is not the same location as the operating
system current folder.

You can always load files and execute scripts and functions that are in the
current folder, even if that folder is not currently on the MATLAB search
path. Functions in the current folder take precedence over functions with the
same file name that reside anywhere on the search path.

Viewing and Changing the Current Folder. You can view and change
the current folder using various desktop tools and functions, as described in
the following table. To specify the current folder programmatically when
MATLAB starts, see “Startup Folder for the MATLAB Program” on page 1-8.

7-4



Understanding File Locations in MATLAB®

To: Do this:

Identify the Current
Folder

Use one of the following:

• The Current Folder field on the Desktop
toolbar.

• The Current Folder browser address bar —
if the full path is not visible, hover over the
folder icon.

• The pwd or cd function.

Change the current
folder to one you specify

Do one of the following:

• In the Current Folder field on the Desktop
toolbar, type or browse to a different folder.

• On the Current Folder browser address
bar, click an arrow that appears between
portions of the path, and then choose a drive
or subfolder from the drop-down list.

• Use the cd function.

Change the current
folder to a recently used
folder

From the Current Folder field on the Desktop
toolbar, click the down arrow, and then select a
folder from the history.

Change the current
folder to an active
document’s folder

Right-click the document tab in the Editor, and
then select Change Current Folder to folder.

Document tabs appear only when more than one
document is open in the Editor.

Make a subfolder the
current folder

In the Current Folder browser, right-click the
subfolder, and then select Open from the context
menu.

7-5



7 Managing Files in MATLAB®

To: Do this:

Copy the Current Folder
as a string

• Select the address in the Desktop toolbar,
right-click, and then select Copy.

• Click an empty area on the right edge of the
Current Folder address bar, right-click, and
then select Copy.

Get help using the
Current Folder address
bar

Right-click an empty area on the address bar,
and then from the context menu, select Help
Using Address Bar

matlabroot
matlabroot is the folder where you installed MATLAB. The location differs
for each installation of MATLAB. Determine its location by running the
matlabroot function. When you start MATLAB, your current folder can be
matlabroot, but in practice it is usually a different folder.

The Startup Folder
Each time you start MATLAB, your current folder is always the same. This
location is called the startup folder. The operating system commands that
runs MATLAB specifies the location of the startup folder. You can configure
MATLAB to make your initial current folder a different location. For more
information, see “Startup Folder for the MATLAB Program” on page 1-8.

Locations of MathWorks Products
Files and folders for products provided by MathWorks are in
matlabroot/toolbox. The files and folders under matlabroot are important
to your installation. In particular:

• Do not store your personal files and folders in matlabroot/toolbox.

• Do not change files, folders, and subfolders in matlabroot/toolbox. The
exception is the pathdef.m file, which you can update and save in its
default location, matlabroot/toolbox/local.

To improve performance, at the beginning of each session, MATLAB loads
and caches in memory the locations of files in matlabroot/toolbox. If you

7-6



Understanding File Locations in MATLAB®

make changes to files and folders in matlabroot/toolbox, running functions
can produce unexpected results or generate warnings, that are related to
the toolbox cache. See “Toolbox Path Caching in the MATLAB Program”
on page 1-19.

To see a list of all toolbox folder names supplied with MathWorks products,
run:

dir(fullfile(matlabroot, '/toolbox'))

Locations for Storing Your Files
For your convenience, MATLAB provides a folder called MATLAB to store
your files. At startup, MATLAB adds the folder to the search path, allowing
MATLAB to access the files stored there.

The location of the userpath MATLAB folder varies by platform and system
configuration. To determine the location, run the userpath function.

On Microsoft Windows platforms, MATLAB sets the current folder to
userpath at startup. On other platforms, you instruct MATLAB differently
to set the current folder to userpath at startup. For more information, see
“Startup Folder for the MATLAB Program” on page 1-8.

If you create subfolders within the MATLAB folder, make the new subfolders
accessible to MATLAB.

If you store files in locations other than the MATLAB folder:

• Make the files accessible to MATLAB by adding their folders to the search
path.

• Do not store the files in the folders provided for MathWorks products.

Path Names in MATLAB
A path name specifies file locations, for example, C:\work\my_data (on
Microsoft Windows platforms) or /usr/work/my_data (on UNIX or Macintosh
platforms). Path name specifications differ, depending on the platform on
which you are running MATLAB. When you work with files and folders, be

7-7



7 Managing Files in MATLAB®

aware of how MATLAB uses path names and the restrictions it places on
them.

Specifying Path Names on Macintosh Systems
When you specify path names on Macintosh, do not use accent characters. If
path names include such characters, for instance umlauts or circumflexes, the
Current Folder browser and MATLAB cannot recognize the path. In addition,
attempts to save a file to such a path results in unpredictable behavior.

Specifying File Separator Characters, / and \
The file separator character is the symbol that distinguishes one folder level
from another in a path name.

A forward slash (/) is a valid separator on any platform. A backward slash
(\) is valid only on MicrosoftWindows platforms.

In the full path to a folder, the final slash is optional.

Type filesep in the Command Window to determine the correct file separator
character to use when working with files programmatically.

Specifying Absolute and Relative Path Names
MATLAB always accepts absolute path names (also called full path names),
such as I:/Documents/My_Files. An absolute path name can start with
any of the following:

• UNC path '\\' string

• Drive letter, on Microsoft Windows platforms, such as C:\.

• '/' character on UNIX10 platforms

Some MATLAB functions also support relative path names. The reference
page for a function specifies the valid types of path name. Unless otherwise
noted, the path name is relative to the current folder. For example:

10. UNIX is a registered trademark of The Open Group in the United States and other
countries.

7-8



Understanding File Locations in MATLAB®

• /myfolder refers to the myfolder folder in the current folder and myfile.m
refers to the myfile.m file in the current folder.

• ../myfolder/myfile.m refers to the myfile.m file in the myfolder folder,
where myfolder is at same level as the current folder. Each repetition of
../ at the beginning moves up an additional folder level.

Tip If multiple documents are open and docked in the Editor, you can copy
the absolute path of any of these documents to the clipboard. This is useful if
you need to specify the absolute path in another MATLAB tool or an external
application. Right-click the document tab, and then select Copy Full Path
to Clipboard

Maximum Length of Path Names in MATLAB
The maximum length allowed for a path name depends on your platform.

For example, on Microsoft Windows platforms:

• The maximum length is known as MAX_PATH.

• You cannot use an absolute path name that exceeds 260 characters.

• For a relative path name, you might need to use fewer than 260 characters.
When the Windows operating system processes a relative path name, it can
produce a longer absolute path name, possibly exceeding the maximum
length.

If you get unexpected results when working with long path names, use
absolute instead of relative path names. Alternatively, use shorter names
for folders and files.

Constructing Path Names on Different Platforms
Use fullfile to construct path names in statements that work on any
platform. This function is particularly useful when you provide code to
someone using it on a platform different from your own. The ismac, ispc, and
isunix functions identify the platform you are currently using.

7-9



7 Managing Files in MATLAB®

Including Spaces in Path Names
When a function argument is a file or path name, and the name includes
spaces, use the function syntax. For example:

delete('temp file.m') % Function syntax works for a file name containing a space

The command syntax does not work. For example:

delete temp file.m % Command syntax does NOT work for a file name containing a space

Partial Path Names in MATLAB
A partial path name is the last portion of a full path name for a location on
the MATLAB search path.

Some functions accept partial path names. The reference page for a function
typically specifies the valid types of path names.

Examples of partial path names are: matfun/trace, private/cancel, and
demos/clown.mat.

Use a partial path name to:

• Specify a location more conveniently than by using the full path name.

• Specify a location independent of where MATLAB is installed.

• Locate a function in a specific toolbox when multiple toolboxes contain
functions with that name. For example: to get help for the set function in
the Database Toolbox™ product, type:

help database/set

For help for the plot method for time series objects, type:

help timeseries/plot

• Locate private and method files, which sometimes are hidden.

Be sure to specify enough of the path name to make the partial path name
unique. Specifying the @ in method folder names is optional.

7-10



Understanding File Locations in MATLAB®

See Also

• “Slash and Backslash — / \”

• “Naming Functions”

• ismac, ispc, and isunix functions, for MATLAB statements that require
different path names for different platforms

• “Private Functions” in the MATLAB Programming Fundamentals
documentation.

7-11



7 Managing Files in MATLAB®

Working with Files and Folders

In this section...

“Viewing Folder Contents” on page 7-12

“Using the Current Folder Browser” on page 7-18

Viewing Folder Contents

• “Opening the Current Folder Browser” on page 7-13

• “Preferences for the Current Folder Browser” on page 7-14

• “Refreshing the List of Files” on page 7-15

• “Viewing Hidden Files and Folders” on page 7-16

• “Controlling the Appearance of Files Inaccessible to MATLAB” on page 7-16

• “Using Functions to Get Details About Files and Folders” on page 7-18

You can view information about folders from the MATLAB Desktop like
you can from operating system windows. You can also type commands to
describe files as you can from a command shell. For a summary of MATLAB
functions you can use, see “Using Functions to Get Details About Files and
Folders” on page 7-18 .

The principal Desktop tool for working with files and folders is the Current
Folder browser. Like other Desktop components, you can dock the Current
Folder browser or open it as a separate window. The Current Folder browser
displays details about files in your current folder and within the hierarchy of
the folders it contains. You can modify the kinds of information it displays
to suit your needs, for example by reordering or deleting specific columns of
information.

The Current Folder browser:

• Always displays your current folder, as well as its subfolders.

• Lets you access operating system file management features from within
MATLAB.

7-12



Working with Files and Folders

• Is similar to file browsers provided with operating systems, but also
includes features unique to MATLAB. For example, you can add folders to
the search path from the Current Folder browser.

The following sections explain what you can do with the Current Folder
browser and how to use it.

Opening the Current Folder Browser
Open the Current Folder browser by selecting Desktop > Current Folder
from the MATLAB desktop. By default (when you start MATLAB for the first
time) the Current Folder browser is docked on the left side of the desktop.

The Current Folder browser shows the full path to the current folder in
the navigation bar, and shows the contents of the current folder in a pane
underneath the bar.

Change the size, location, or other characteristics of the Current Folder
browser as you would any tool on the MATLAB desktop. See Chapter 2,
“Desktop”. You also can undock it from the desktop.

7-13



7 Managing Files in MATLAB®

View the contents of subfolders and zip files by clicking the + (expand) button.
Double-clicking a subfolder displays its contents, and makes that folder the
current folder. Right-clicking a zip file and then selecting Extract extracts
the files from it.

MATLAB might not be able to run files in the subfolders. See “Making Files
and Folders Accessible to MATLAB” on page 7-66.

Preferences for the Current Folder Browser
You can set preferences for aspects of the Current Folder browser. Access
these preferences by selecting File > Preferences > Current Folder. The
preferences are:

• History — The number of recently used folders maintained in the Current
Folder browser drop-down list.

7-14



Working with Files and Folders

• Refresh — How frequently the Current Folder browser updates to reflect
changes to files made outside of MATLAB.

• Path indication— Controls the appearance of folders and files that are
inaccessible to MATLAB, and whether to display tooltips describing their
status.

• Toolbar — Provides a link to the Toolbars preferences. Those preferences
enable you to adjust the toolbar layout and controls for Desktop tools,
including the Current Folder browser.

• Hidden files — Controls whether the Current Folder browser displays
hidden files and folders.

This preference not on available Microsoft Windows platforms.

Tip For information on changing the date format in the Current Folder
browser, see “Customizing the Column Display” on page 7-19

Refreshing the List of Files
When files and folders are created, deleted, or changed outside of MATLAB,
the Current Folder browser automatically reflects the changes. When
you access files on a network, frequent refreshing of the Current Folder
browser can slow performance in MATLAB. If this seems to be a problem, try
improving the performance by changing how frequently refreshing occurs
using the Current Folder Refresh preference:

1 Select File > Preferences > Current Folder.

By default, the Auto-refresh view from file system option is on, with
an update time of 3 seconds. Every 3 seconds, the Current Folder browser
checks for and reflects changes made from programs and tools other than
MATLAB.

2 Try to improve responsiveness by either:

• Increasing the Number of seconds between auto-refresh.

• Clearing the Auto-refresh view from file system check box to turn
off the feature.

7-15



7 Managing Files in MATLAB®

3 Click OK.

To manually refresh the view at any time:

1 Right-click in the list area of the Current Folder browser.

2 Select Refresh from the context menu.

Viewing Hidden Files and Folders
The operating system, by default, hides certain files and folders from system
file browsers and file-listing commands. The Current Folder browser can
display hidden files and folders. You control this in different ways on different
operating systems.

On Microsoft Windows platforms, the Current Folder browser follows the
Windows preference for showing hidden files. To set or change the Windows
preference:

1 Open Windows Explorer.

2 Select Tools > Folder Options.

3 Click the View tab.

4 Under Advanced settings, select Show hidden files and folders.

On other platforms, specify the behavior using Current Folder preferences:

1 Select File > Preferences > Current Folder.

2 Specify the setting for Hidden files and folders.

Controlling the Appearance of Files Inaccessible to MATLAB
MATLAB cannot access files if they are not on the search path or, in some
cases, if they are in a private folder. By default, the Current Folder Browser
dims the display of files and folders inaccessible to MATLAB. Furthermore,
if you hover over a dimmed file, a tooltip provides information on why that
file is inaccessible. If you disable this feature, the Current Folder browser

7-16



Working with Files and Folders

displays all files and folders as undimmed and provides no tooltips regarding
their availability to MATLAB.

To customize this feature:

1 Select File > Preferences > Current Folder.

2 Select the Indicate inaccessible files check box to enable this feature;
deselect it and skip to step 5 to disable this feature.

3 Move the Text and icon transparency slider to adjust the level of
dimming.

View the region below the slider to preview how your choice will affect the
appearance of files in the Current Folder browser.

4 Select Show tooltip explaining why files are inaccessible to enable
tooltips; deselect it to disable them.

5 Click OK.

7-17



7 Managing Files in MATLAB®

For more information, see “Private Folders” and “What Is the Search Path?”
on page 7-72.

Using Functions to Get Details About Files and Folders
In the Command Window, you can list files, move to another folder, create
folders, and delete files and folders. Most of these commands work like they
do in an operating system command shell, but have different options. For
example, some of the commands can return an argument in the form of a
structure containing file information. The following table lists some of the
actions you can perform with commands.

To... Use This Function

Change your current folder cd

Get the name, date, and size for a
file or folder

dir or ls

Get and set the read-write status
and other attributes for a file or
folder

fileattrib

Separate a path name into folder
and file name

fileparts

Build a file or folder name from parts fullfile

Determine if a string corresponds to
a folder

isdir

Move a file to a different folder movefile

Create a folder mkdir

Delete a file delete

Delete a folder rmdir

List files specific to MATLAB what

Using the Current Folder Browser

• “Customizing the Column Display” on page 7-19

7-18



Working with Files and Folders

• “Viewing File Descriptions” on page 7-20

• “Viewing File Details Without Opening Files” on page 7-21

• “Viewing Help for a MATLAB Program File” on page 7-24

• “Sorting and Grouping Files and Folders” on page 7-24

The Current Folder browser lists details about files and folders in columns,
beneath file and folder names, and in the details panel. Any file that is
modified in the Editor, but not yet saved has an asterisk (*) next to it in
the Current Folder browser. The browser displays columns for Size, Date
Modified, Type, and Description. You can modify the information it
displays. You also use this tool to perform operations on files and folders, such
as moving, compressing, renaming, creating, and deleting them.

Note Do not use accented characters, such as à, é, ñ, or ϋ, in folder names.
The Current Folder browser cannot locate folders containing such characters
or save files to them.

Customizing the Column Display
You can show and hide columns, change their order, and adjust the date
format in the Current Folder browser.

To Specify the Columns to Display.

1 Select View > Show or right-click on any column header.

2 Select the columns to show. Clear the columns to hide.

In addition, consider:

• Hiding the Type column if the icon column provides enough information
about the type.

• Sorting or grouping by a column without showing the column.

Select View > Group By or View > Sort By. Then, choose the method by
which you want to group or sort columns.

7-19



7 Managing Files in MATLAB®

To Modify Columns.

• To change the order, drag a column header to a new position.

• To change the width, drag the edge of the column header.

To Change the Date Format. MATLAB uses your operating system’s short
date format to display dates in the Current Folder browser and the Command
History window. To change the date format, for instance from MM/DD/YYYY
to DD/MM/YYYY, (where MM is the numerical value for the month, DD is the
numerical value for the day, and YYYY is the numerical value for the year):

1 Change the short date format for your operating system. For instructions,
see your operating system documentation.

2 Refresh the date display by either restarting MATLAB or doing the
following:

• In the Current Folder browser, right-click, and then choose Refresh
from the context menu.

Dates refresh and use the new format.

• In the Command History window, right click, and then choose Clear
Command History from the context menu.

The window clears. MATLAB specifies new dates in the window using
the new format.

Viewing File Descriptions
Show or hide descriptions in the Current Folder browser by selecting
View > ShowDescription.

Descriptions appear in gray text beneath the name of the file or folder. When
the Current Folder browser window is wide enough, descriptions display on
the same line as file names. The Current Folder browser shows descriptions
only for files and folders that are relevant to products from MathWorks. How
the Current Folder browser gets the description depends on the type of item:

• MATLAB program files — The description is the first line of the help
comments, known as the H1 line.

7-20



Working with Files and Folders

• Simulink Models — The description is from the Description pane of the
Model Properties dialog box. Use the Current Folder browser to view model
descriptions without starting the Simulink software.

• Folders — The description is the first comment line of the Contents.m
file for the folder.

To provide descriptions for your own files and folders, see “Providing Your
Own Help and Demos” on page 5-8.

Viewing File Details Without Opening Files
Display file details without opening a file by selecting the file, and then
clicking the up arrow button on the lower right corner of the Current Folder
browser. The details panel expands.

7������"�����

����


File and Folder Details. When you select a file or folder, the details panel
displays more information about that file or folder, if possible. For example,
if you select a MATLAB code file, the details panel shows the functions or
subfunctions which that the file contains.

7-21



7 Managing Files in MATLAB®

Image File Details. When you select a JPEG, JPG, BMP, WBMP, PNG, or GIF
image, the details panel displays a thumbnail of the image and lists its width
and height in pixels. To open the Import Wizard, double-click the thumbnail.

7-22



Working with Files and Folders

Viewing Unsaved File Changes. When you select a file that is currently
open in the Editor and that contains unsaved changes, an asterisk (*) appears
after that file name. The Current Folder browser columns reflect the content
of the unsaved file. For instance, if you open a file, change it from a script to a
function, and modify the H1 line, then the icon, type name, and description
update in the Current Folder browser.

The preview in the details panel also reflects the unsaved file content, not the
content on disk. For instance, in the following example, PropertyTwo exists
in the modified MyClass.m file, but not the MyClass.m file on disk.

Viewing and Going to Elements within a MATLAB Program File. The
details panel lists these elements when you selected a file with a .m extension:

• Subfunctions

• Cells

• Properties

• Methods

To open the file in the Editor, scroll to the start of the element in the details
panel and double-click the element.

7-23



7 Managing Files in MATLAB®

Viewing and Loading MAT-File Variables. Use the details panel to view
the name, class, and value of all variables in the selected MAT-file. To load a
variable into the workspace, select it in the details panel and drag it to the
Workspace browser. The folder containing the MAT-file does not need to be
on the search path for you to load it in this way.

Viewing Help for a MATLAB Program File
From the Current Folder browser, you can view help for a file that has a.m
extension and is in the current folder or in a folder on the search path:

1 Right-click the file.

2 Select View Help from the context menu.

The reference page, if it exists, opens in the Help browser. Otherwise,
help comments from the beginning of the file, if any exist, display in the
Help browser.

Sorting and Grouping Files and Folders
Organize, find, and manage the files and folders you use with MATLAB by
sorting and grouping items.

By default, sorting is by Name and grouping is off.

Regardless of the sorting and grouping options selected, the Current Folder
browser lists folders and files separately.

Sorting Items. To change the order of items listed, sort by column:

1 Select View > Sort By.

2 Select the name of the column to sort by.

Alternatively, click the column header by which you want to sort. Click it
again to reverse the direction of sorting.

Grouping Items. To see related items listed together, group them:

1 Select View > Group By.

7-24



Working with Files and Folders

2 Select Type, Size, or Date Modified.

Each group has a label. To hide the items in a group, click the collapse button
(–) next to the label.

To turn off grouping, select View > Group By > Stop Grouping.

Using Sorting and Grouping Together. You can sort and then group, or
group and then sort.

After grouping items, sort using different criteria. The sort applies to the
groups and to items within each group.

The following figure illustrates grouping by type, with some groups collapsed.
The sort order is descending by date

• Because the most recently modified item was a MATLAB figure, the group
of figures appears at the top.

• Within the MATLAB Function group, the most recently modified file,
listmaster.m, appears at the top.

7-25



7 Managing Files in MATLAB®

Viewing Only One Type of File. To view only files of a certain type (for
example, files having a .m extension) use a simple search. See “Simple Search
for File and Folder Names in the Current Folder Browser” on page 7-27.

7-26



Finding Files and Folders

Finding Files and Folders

In this section...

“Finding Files and Folders by Name in the Current Folder” on page 7-27

“Simple Search for File and Folder Names in the Current Folder Browser”
on page 7-27

“Advanced Search for Files — Find Files Tool” on page 7-30

“Locating a File or Folder in the Operating System Browser” on page 7-34

“Finding Files and Folders Using Functions” on page 7-35

“Additional Ways to Find Files” on page 7-35

Finding Files and Folders by Name in the Current
Folder
In the Current Folder browser, use the typeahead feature to find a file or
folder by name in the current folder:

1 Position the pointer in the list of files and folders in the current folder.

2 Type the first characters of the name you want to find.

As you type, the Current Folder browser searches downward from the top of
the window, looking through all expanded folders. It selects the first entry
in the current folder whose name begins with the characters you typed.

Typeahead and find as you type are other names for this feature.

Simple Search for File and Folder Names in the
Current Folder Browser
Find names in the current folder and subfolders that contain a specified series
of characters by using the search field in the Current Folder browser. Instant
search and filtering are other names for this feature.

7-27



7 Managing Files in MATLAB®

Steps for Using the Search Field

1 Change the current folder to the folder you want to look within.

See “Viewing and Changing the Current Folder” on page 7-4.

2 Perform a search by clicking within the address bar or click the search

button in the address bar.

If you clicked the search button, the path in the address bar becomes a field
where you enter text, displaying the message Type search text (ex:
*.m). Typing in the field replaces this message with your typed characters.

If you clicked in the address bar, the current folder path is highlighted.

, Type over or after the path and press Enter
to change to a new folder.

(If the address bar is not in the Current Folder browser toolbar, see “Using
Toolbar Features” on page 2-110.)

You can either type a full path name or begin typing a file name. On
Microsoft Windows platforms, full path names begin with two backslashes
(\\) or with a drive letter followed by a colon (for example, C:). On other
systems, full path names begin with a slash (/). If you type a partial path
name, such as matlab\toolbox, it is regarded as a file name.

3 Ignore irrelevant characters in the string by using * (an asterisk) as the
wildcard character.

As you type, the Current Folder browser lists only the names of files and
folders that include the string you typed.

The following is an example of the results when you search for coll. The
example shows results arranged by location, with the full path to the
location in parenthesis.

7-28



Finding Files and Folders

4 Press Enter:

• When you press Enter after typing a path name, the path that you typed
becomes the current folder. If the folder you specified cannot be found,
you receive an error dialog; after you click OK to dismiss it, your current
folder remains unchanged.

• When you press Enter after typing a file name, all files within the
current folder and its subfolders that match the name are shown. If no
matches exist, the Current Folder browser is empty. Click the X button

to the right of the search field to redisplay the complete contents
of the current folder.

5 Further filter the list by typing additional characters or removing
characters you already typed.

7-29



7 Managing Files in MATLAB®

Continuing the example, append *.m to show only file names that begin
with coll and have a .m extension.

6 Customize the way search results appear by using the View menu options:
Show, Sort, and Group. See “Viewing Folder Contents” on page 7-12.

7 Clear the filter results and show all items in the current folder by clicking

the Close box in the filter field. Alternatively, press the Esc key.

Advanced Search for Files — Find Files Tool
To look for a specified string in file names and within files located in multiple
folders, select File > Find Files, which opens the Find Files tool. The
following sections provide details on using the tool.

• “Steps for Using the Find Files Tool” on page 7-31

• “Opening Files from the Results List” on page 7-32

• “Accessing Previous Results” on page 7-33

• “Skipping File Types” on page 7-33

7-30



Finding Files and Folders

Steps for Using the Find Files Tool

1 Open the Find Files tool by selecting Edit > Find Files.

2 Search for file names containing a specified string by typing the string in
the Find files named field.

Ignore irrelevant characters in the string by using an asterisk (*) as the
wildcard character. For example, type coll* to search for file names that
start with coll.

3 Search for a specified string in the content of files by typing the string in
the Find files containing text field.

For example, search for plot. Alternatively, select text in the Command
Window or Editor and that text appears in the field.

• For partial word searching in file contents, select Contains text under
the More options Search type.

• Find an exact full-string match by selecting Matches whole word.

4 Specify file types to search for by selecting one of the options listed in the
table.

One type For Include only file type(s), select the file type you
are looking for.

For example, select *.m to limit the search to MATLAB
program files.

All types
a For Include only file type(s), select All files (*).

b Clear the Skip file type(s) check box, under More
options.

Other
variations a For Include only file type(s), select All files (*).

b Select the Skip file type(s) check box, under More
options.

7-31



7 Managing Files in MATLAB®

c Select Edit to specify the file types.

See “Skipping File Types” on page 7-33.

5 Specify the folders to search, using one of the Look in options:

• Select an option listed.

• Enter the full path for one or more folders. Separate each path by a
semicolon (;).

• Include subfolders by selecting the Include subdirectories check box.

6 Further restrict the search using More options. For example, use the
Skip files over option. It ignores large files that could take a long time
to look through.

7 Perform the search by clicking Find.

The Find Files tool presents the search results in the right pane of the
dialog box, with a summary at the bottom. For text searches, results
include the line number and line of code.

8 Customize the display of results:

• To see file locations, select Show full pathnames.

• To sort results by a column, click the column heading. For example, click
Line to sort results by line number.

Opening Files from the Results List

1 Select the file to open. To select multiple files:

• Click to the left of an icon and drag up or down to select contiguous items

• Shift+click to select contiguous items

• Ctrl+click to select non-contiguous items

2 Right-click and select one of the Open options from the context menu.

7-32



Finding Files and Folders

For details about the Open options, see “Opening and Running Files” on
page 7-45.

Accessing Previous Results
View the results of a previous search by selecting its tab at the bottom of the
results pane. The Find Files tool shows up to 10 tabs for previous search
results while the tool is open. File Files does not maintain the results after
you close the tool.

Skipping File Types
Use the Find Files tool to look in all file types except file types you specify:

1 For Include only file type(s), select All files (*).

2 Specify the file types you want the search to ignore:

a Select the Skip file type(s) check box.

b Click Edit.

3 In the resulting Edit Skipped File Extension dialog box, specify which file
types to look in and which to ignore:

• Ignore a file type by selecting its State check box.

• Look for a file type by clearing its State check box.

4 Add any file types not listed that you want to skip or look for:

a Enter the file extension in the field at the top of the dialog box.

b Click Add.

The file type appears in the list.

c Verify that the State check box has the setting you want.

The example at the end of this procedure shows the scc file type added.

5 Reduce the size of the list by removing any file extensions irrelevant to
your search:

a Select the name of the extension.

7-33



7 Managing Files in MATLAB®

b Click Remove.

6 Click OK to accept your changes.

The Edit Skipped File Extensions dialog box closes.

When you use the Find Files tool, search ignores the selected file types after
making the changes.

Locating a File or Folder in the Operating System
Browser
To go to a file or folder location in the Windows Explorer or the Apple
Macintosh Finder, do one of the following:

• In the Current Folder browser, right-click the file or folder, and then select
Locate on Disk.

7-34



Finding Files and Folders

• In the Editor, right-click a document tab, and then select Locate on Disk.

Document tabs appear in the Editor only when multiple documents are
open and docked in the Editor.

The Windows Explorer or Macintosh Finder opens to the folder containing
the selected item.

Finding Files and Folders Using Functions

To... Use This Function

List files and folders in the current folder or in
subfolders on the search path

dir

Determine if a variable, function, or folder exists. exist

Search for the specified string in the first line of
help in a MATLAB program file

lookfor

See files and folders that are relevant to MATLAB what

See the full path to a file which

Additional Ways to Find Files

• “Tools for Managing Files” on page 7-2

• “Finding Functions Using the Function Browser” on page 3-40

• “Searching the Documentation” on page 4-14

• “Finding Files in File Exchange — Searching and Using Tags” on page 8-13

7-35



7 Managing Files in MATLAB®

Creating, Opening, Changing, and Deleting Files and
Folders

In this section...

“Creating New Files and Folders” on page 7-36

“Copying, Renaming, and Deleting Files and Folders” on page 7-42

“Opening and Running Files” on page 7-45

Creating New Files and Folders
You can add files and subfolders to your current folder with the Current
Folder browser or by typing commands.

• “Creating Files and Folders with the Current Folder Browser” on page 7-36

• “Creating and Updating MAT-Files with the Current Folder Browser” on
page 7-37

• “Creating and Managing Zip File Archives” on page 7-38

• “Creating Files and Folders Using Functions” on page 7-41

Creating Files and Folders with the Current Folder Browser

1 Right-click at the location for the new file or folder. See “Locations for
Storing Your Files” on page 7-7.

2 Select one of the following from the context menu:

• New Folder.

MATLAB creates and selects a folder named New Folder.

• New File > file-type,

You can select Script, Function, Class, Enumeration, or (if Simulink is
installed) Model. Function, class, and enumeration files that you create
this way contain template information representing the fundamental
elements for the file (such as function arguments).

7-36



Creating, Opening, Changing, and Deleting Files and Folders

MATLAB creates and selects a new file named untitled with the
appropriate extension.

3 Replace the selected name by typing a new name.

For file naming conventions, see “Function Name” and “Naming Functions”.

4 Press Enter.

Creating and Updating MAT-Files with the Current Folder
Browser
To create or update a MAT-file using variables in the workspace:

1 In the Current Folder browser, change the current folder to the folder
where you want to save the variables. See “Locations for Storing Your
Files” on page 7-7.

2 In the Workspace browser, select a variable to save. Hold down the Ctrl
key and click any other variable names you want to include in the MAT-file.

3 Drag the selected variables from the Workspace browser to the Current
Folder browser.

4 Drop the variables in the Current Folder browser:

• Create a MAT-file by dropping the variables onto any empty location in
the Current Folder browser. Then name the file.

• Update an existing MAT-file by dropping the variables onto the file
name.

MATLAB warns you when the MAT-file contains variables of the same
name. To update the existing variables, click Continue. Otherwise,
click Cancel.

To suppress the warning, select
File > Preferences > General > Confirmation Dialogs, and clear
the preference, Confirm when overwriting variables in MAT-files.

See also “Opening Files and Importing Data Using the Current Folder
Browser” on page 7-45.

7-37



7 Managing Files in MATLAB®

Creating and Managing Zip File Archives
To back up files, conserve file storage space, or to forward collections of files
to other people, create archives using zip files. You can create, view, and
adjust the contents of a zip file from within the Current Folder browser, as
described in the sections that follow.

Viewing the Contents of Zip Files. To view the contents of a zip file
without extracting any files it contains, click the associated + (expand) button
in the Current Folder browser. This feature is helpful when you want to:

• Confirm the contents of a newly created zip file

• View the contents of a zip file before extracting files

• Selectively open certain items from a zip file

The following image shows graphics.zip expanded within the Current
Folder browser. By default, files within a zip file appear dimmed to indicate
that they are not on the MATLAB path.

7-38



Creating, Opening, Changing, and Deleting Files and Folders

Note Archives created outside of MATLAB can be encrypted or
password-protected. You cannot add files to, or extract files from, protected
archives from within MATLAB.

Creating Zip Archives.

1 In the Current Folder browser, select a folder or one or more files, and
then right-click on any selected item.

2 From the context menu, select Create Zip File.

MATLAB creates an archive of the selected folder, file or files, and gives
the archive a default name of Untitledn.zip, where n is an integer.

3 Type over the default file name to specify a descriptive name, for example
listmaster_export.zip, as shown here.

Extracting Files from Zip Files. To extract a single file from within a zip
file in the Current Folder browser, do one of the following:

• Copy a file name and paste it into a folder in the Current Folder browser.

• Drag the file into a folder in the Current Folder browser.

MATLAB extracts the file and saves it to the folder where you dragged or
pasted it.

7-39



7 Managing Files in MATLAB®

To extract all the files from a zip file, do one of the following:

• Double-click the zip file in the Current Folder browser.

• Right-click the zip file, and then select Extract.

MATLAB extracts the entire contents of the zip file into a folder having the
same name as the zip file, as shown here.

Because MATLAB creates a folder when extracting files, none of the extracted
files can overwrite files that have the same name. If you attempt to overwrite
a folder with the same name when extracting, MATLAB prompts you to
determine what you want to do.

Adding Files to a Zip Archive. To add files and folders to a zip file archive
in the Current Folder browser, do one of the following:

• Select, and then drag the file that you want to add onto the archive.

7-40



Creating, Opening, Changing, and Deleting Files and Folders

• Copy the file that you want to add to the archive. Then, select the archive
to which you want to add the file and paste the file into the archive.

If the archive contains a file or folder with the same name as the one you are
adding, a MATLAB dialog box opens. The dialog box asks if you want to
replace the existing file in the archive.

Comparing the Contents of a Zip Archive to Unzipped Files and
Folders. To determine differences between archived and unarchived files,
use the Comparison Tool from within the Current Folder browser as you
would for any other files and folders.

For instance:

• Right-click a zip archive, and then from the context menu select Compare
Against and specify the folder to which you want to compare the contents
of the zip archive.

• Expand a zip archive, right-click a file within it, and then from the context
menu select Compare Against. Specify the file to which you want to
compare the archived file.

For details, see “Comparing Files and Folders” on page 7-50.

Creating Files and Folders Using Functions
As an alternative to using the Current Folder browser to create files and
folders, you can run functions in the Command Window or from a script.

To... Use This Function

Create a folder mkdir

Create a text file, such as a MATLAB
program file

edit

Create a MAT-file save

Create archive of files zip, gzip, tar

Extract files from archive unzip, gunzip, untar

See also “Locations for Storing Your Files” on page 7-7.

7-41



7 Managing Files in MATLAB®

Copying, Renaming, and Deleting Files and Folders

• “Renaming Files Using the Current Folder Browser” on page 7-42

• “Renaming Files and Folders Using Functions” on page 7-42

• “Deleting Files and Folders Using the Current Folder Browser” on page 7-42

• “Deleting Files and Folders Using Functions” on page 7-44

• “Copying and Moving Files and Folders” on page 7-45

• “Changing Properties of Files and Folders” on page 7-45

Renaming Files Using the Current Folder Browser

1 Select the item to rename.

2 Right-click and select Rename from the context menu.

3 Type over the existing name with the new name. Warnings appear when:

• The new name is invalid. Change the name to make it valid. See
“Naming Functions”.

• The folder is on the search path. See “Handling Errors and Unexpected
Behavior When Updating Folders” on page 7-83.

4 Press Enter.

Renaming Files and Folders Using Functions
Use the movefile function.

Deleting Files and Folders Using the Current Folder Browser
To remove items:

1 Select the item to delete. To select multiple items:

• Click to the left of an icon and drag up or down to select contiguous items

• Shift+click to select contiguous items

• Ctrl+click to select non-contiguous items

7-42



Creating, Opening, Changing, and Deleting Files and Folders

2 Right-click and select Delete from the context menu.

Note You cannot delete a folder while it is on the search path. See “Handling
Errors and Unexpected Behavior When Updating Folders” on page 7-83.

When you delete a file or folder using the Current Folder browser, MATLAB
permanently removes it or moves it to another location, based on your
platform.

Platform Behavior Deleting Files and Folders Using
the Current Folder Browser

Microsoft Windows
platforms

Follows the Windows system preference for
sending files to the Recycle Bin. Some systems
only allow recycling of local files and not files
accessed on a network.

To delete a selection permanently when the
system preference is set to recycle, press
Shift+Delete.

Linux platforms Specify the behavior:

1 Select File > Preferences > General.

2 Set the Deleting files option you want.

To move files to a temporary folder, determine
the location by running tempdir.

To delete a selection permanently when the
preference is set to recycle, press Shift+Delete.

Apple Macintosh
platforms

Follows your Macintosh system preference for
sending files to the Trash.

7-43



7 Managing Files in MATLAB®

Deleting Files and Folders Using Functions

To... Use This Function

Delete a file delete

Delete a folder rmdir

You cannot recover folders deleted using rmdir.

By default, the delete function permanently deletes files. To move them to a
different location instead, use the Deleting files preference:

1 From any desktop tool, select File > Preferences > General.

2 Set the Deleting files option you want.

Setting the preference to delete files permanently makes delete run faster.

To override the preference when using the delete function, use the recycle
function.

The location for deleted files varies by platform, as the following table
indicates.

Platform Location for Files Not Permanently Deleted Using the
delete Function

Microsoft
Windows
platforms

Recycle Bin. Some systems only allow recycling of local files
and not files accessed on a network.

Linux
platforms

MATLAB_Files_<day>-<mo>-<yr>_<hr>_<min>_<sec> folder
in the location returned by the tempdir function.

For example, when tempdir returns /tmp, files deleted
at 2:09:28 in the afternoon of November 9, 2009 move to
/tmp/MATLAB_Files_09-Nov-2009_14_09_28.

Apple
Macintosh
platforms

Trash

7-44



Creating, Opening, Changing, and Deleting Files and Folders

Deleted files remain in these locations until you remove them. To remove
deleted files, use operating system features, such as Empty Recycle Bin on
Windows platforms.

Copying and Moving Files and Folders
Copy and move files and folders using the Current Folder browser using
standard GUI practices. For example, click and drag a file from one folder to
another or to another application, such as Windows Explorer.

Note You cannot move a folder that is on the search path using the Current
Folder browser. See “Handling Errors and Unexpected Behavior When
Updating Folders” on page 7-83

To copy and move files and folders using functions, use copyfile and
movefile.

Changing Properties of Files and Folders
To change some properties of files and folders, such as read/write permissions,
use the fileattrib function.

Opening and Running Files

• “Opening Files and Importing Data Using the Current Folder Browser”
on page 7-45

• “Opening Files Using the Current Folder Browser” on page 7-46

• “Opening Files Using Functions” on page 7-47

• “Running MATLAB Program Files from the Current Folder Browser” on
page 7-48

Opening Files and Importing Data Using the Current Folder
Browser

1 In the Current Folder browser, right-click the file you want to open or load.

7-45



7 Managing Files in MATLAB®

2 From the context menu, select an option for opening or importing the file:

• Open— Opens the file using the appropriate MATLAB tool for the file
type. For example, this option loads a MAT-file into the Workspace
browser.

• Open in GUIDE — Opens a FIG-file in GUIDE instead of a figure
window.

For more information, see “Opening GUIDE”.

• Open as Text — Opens the file in the Editor as a text file, even if the
file type is associated with another application or tool.

This is useful, for example, if you have imported a tab-delimited data
file (.dat) into the workspace and you find you want to add a data point.
Open the file as text in the Editor, make your addition, and then save
the file.

• Open Outside MATLAB— Opens the file using the application or tool
that the operating system associates with the file type.

For example, .mat is the extension for MATLAB data files and Microsoft
Access files. Whereas Open loads the file into the MATLAB workspace,
Open Outside MATLAB opens the file into Microsoft Access. See .

• Load — Loads data from the file into the workspace using the Import
Wizard. For more information, click Help in the wizard.

For information on how to view information about a file without opening it,
see “Viewing File Details Without Opening Files” on page 7-21.

Opening Files Using the Current Folder Browser

1 In the Current Folder browser, right-click the file you want to open or load.

2 From the context menu, select an option for opening or importing the file:

• Open— Opens the file using the appropriate MATLAB tool for the file
type. For example, this option loads a MAT-file into the Workspace
browser.

• Open in GUIDE — Opens a FIG-file in GUIDE instead of a figure
window.

7-46



Creating, Opening, Changing, and Deleting Files and Folders

For more information, see “Opening GUIDE”.

• Open as Text — Opens the file in the Editor as a text file, even if the
file type is associated with another application or tool.

This is useful, for example, if you have imported a tab-delimited data
file (.dat) into the workspace and you find you want to add a data point.
Open the file as text in the Editor, make your addition, and then save
the file.

• Open Outside MATLAB— Opens the file using the application or tool
that the operating system associates with the file type.

For example, .mat is the extension for MATLAB data files and Microsoft
Access files. Whereas Open loads the file into the MATLAB workspace,
Open Outside MATLAB opens the file into Microsoft Access. See .

• Load — Loads data from the file into the workspace using the Import
Wizard. For more information, click Help in the wizard.

For information on how to view information about a file without opening it,
see “Viewing File Details Without Opening Files” on page 7-21.

Opening Files Using Functions

To... Use This Function

Open a file or open a variable in the
Variable Editor

open

Add variables from a MAT-file to the
workspace

load

Import data files importdata

Import data file using the Import
Wizard

uiimport

Access the system clipboard clipboard

See Also.

• “Importing Data”

7-47



7 Managing Files in MATLAB®

• fileformats

Running MATLAB Program Files from the Current Folder
Browser
For convenience, you can run MATLAB scripts and functions from the Current
Folder browser. Script files do not accept input arguments or return values
and can be run directly. If the program is a function which requires input
arguments or returns output arguments, you can define a run configuration
for it that defines arguments. See “Using Run Configurations for Functions”
on page 7-48. Run any program file in the following way:

1 In the Current Folder browser, change the current folder to the folder
containing the file to run.

2 Right-click the file name to open the context menu.

3 (Optional) If you have defined a run configuration for the file you want to
use, select it from the Run Configurations on the context menu. Select
Edit Configurations to edit or create one.

4 From the context menu, select Run.

If you have customized the Current Folder Browser toolbar with a Run button
, you can select the file and then click the Run button. That button has

a dropdown list of function run configurations you have defined. For details
about customizing toolbars, see “Setting Toolbars Preferences for Desktop
Tools” on page 2-156

Using Run Configurations for Functions. If you run a function that
requires input arguments, executing it from the Run context menu or toolbar
button item might not work properly. Specify default input arguments for
functions that require them by defining run configurations for them. To
create a run configuration:

1 Right-click the name of a function in the Current Folder browser and select
Run Configurations > Edit Configurations.

2 Give your run configuration a name.

7-48



Creating, Opening, Changing, and Deleting Files and Folders

3 Type in the expressions for running the function in the MATLAB
Expression panel.

4 Click Run if you want to test the configuration.

5 Click Close to save the configuration and exit the dialog box.

Executing a function with a run configuration sets up function arguments
as the configuration specifies. You can create multiple configurations for a
function. Your configurations are saved with your preferences. To use a run
configuration:

1 Right-click on the function name and select Run
Configurations > configuration name.

2 The function executes according to the configuration you select and that
configuration is the selected one the next time you use this context menu.

For more information about using run configurations, see “Running MATLAB
Files in the Editor” on page 9-87.

7-49



7 Managing Files in MATLAB®

Comparing Files and Folders

In this section...

“Comparing Files and Folders” on page 7-50

“Comparing Text Files” on page 7-52

“Comparing Files with Autosave Version or Version on Disk” on page 7-56

“Comparing MAT-Files” on page 7-57

“Comparing Binary Files” on page 7-59

“Comparing Folders and ZIP Files” on page 7-60

“Using Features of the Comparison Tool” on page 7-63

“Function Alternative for Comparing Files and Folders” on page 7-65

Comparing Files and Folders

• “Select Files or Folders to Compare” on page 7-50

• “Choose Comparison Type” on page 7-51

• “Explore Comparison Report” on page 7-52

Select Files or Folders to Compare
The Comparison Tool determines and displays the differences between your
selected pair of files or folders. You can compare files and folders using any
of these methods:

• From the Current Folder browser:

- Select a file or folder, right-click and select Compare Against.

- For two files or subfolders in the same folder, select the files or folders,
right-click and select Compare Selected Files/Folders.

• If you have a file open in the Editor, select Tools > Compare Against.
You can use the Editor options of Choose, Autosave Version, or
Compare Against Version on Disk.

7-50



Comparing Files and Folders

• From the MATLAB desktop, select Desktop > Comparison Tool. Then,
select the files or folders to compare.

• At the command line, you can use the visdiff function.

If you use Compare Against, select the second item to compare in the
Select Files or Folders for Comparison dialog box. Optionally, change the
comparison type if multiple types are available for your selections.

Choose Comparison Type
If you specify two files or folders to compare using either the Current Folder
Browser or the visdiff function, then the Comparison Tool automatically
performs the default comparison type.

If there are multiple comparison types available for your selections, you can
change what type of comparison to run, for example, text, binary, file list, or
XML comparison. To change comparison type, create a new comparison from
the Comparison Tool. You can change comparison type in the Select Files or
Folders for Comparison dialog box.

For example, from the Current Folder browser, if you select two MAT files to
compare, you get the default comparison type showing information about the
variables. To change the comparison type to binary, create a new comparison
from the Comparison Tool. See “Selecting Files or Folders to Compare from
the Comparison Tool” on page 7-63.

7-51



7 Managing Files in MATLAB®

Explore Comparison Report
The Comparison Tool report features depend on your comparison type. You
can use the tool to:

• Compare lines in two text files (some other applications refer to this as a
file diff operation). See “Comparing Text Files” on page 7-52.

• Compare variables in two MAT-files. See “Comparing MAT-Files” on page
7-57.

• Determine whether the contents of two binary files are the same. See
“Comparing Binary Files” on page 7-59.

• Compare any combination of folders, ZIP files, or Simulink manifests:

- To determine which file and folder names are unique to each list

- To determine if files and folders with the same name in each list have
the same content

See “Comparing Folders and ZIP Files” on page 7-60.

• Compare XML files:

- If you select XML files to compare and you have MATLAB® Report
Generator™ software, the tool runs a hierarchical matching algorithm.
You then see a report showing a hierarchical view of the portions of the
two XML files that differ.

- If you have Simulink® Report Generator™ software, you can select a
pair of Simulink models (.mdl files) to compare XML files generated
from them.

Comparing Text Files

• “Highlighting of Differences” on page 7-53

• “Stepping Through Differences” on page 7-55

• “Viewing a Summary of Differences” on page 7-55

• “Hide Whitespace Differences in Text Comparisons” on page 7-56

• “Increasing or Decreasing Line Lengths Shown for Text Files” on page 7-56

• “Save HTML Report” on page 7-56

7-52



Comparing Files and Folders

Highlighting of Differences
To select files to compare, see “Select Files or Folders to Compare” on page
7-50.

When you use the Comparison Tool to compare two text files, a window opens
and presents the two files side by side. Symbols indicate how you can adjust
the files to make them match. This feature can be useful when you want to
compare the latest version of a text file to an autosave version.

The Comparison Tool report displays the files side by side and highlights
lines that do not match, as follows:

• Dark pink highlighting indicates changed characters within lines.

• Pink highlighting and an x between the two sides indicate that the content
of the lines differs between the two files.

• Green highlighting and a right (>) or left (< ) angle bracket between the
two sides indicate a line that exists on one side only.

7-53



7 Managing Files in MATLAB®

The Comparison Tool attempts to match lines and detects local text that is
added, deleted, or changed. It does not do a simple line-by-line comparison. In
the previous image, for example, the tool determines that lengthofline2.m
has a line of code that does not exist in lengthofline.m and highlights it
(line 23) in green. Also, notice that the tool takes the additional line into

7-54



Comparing Files and Folders

account and determines that the line containing the end statement in each
file matches, even though the end statement does not occur on the same line
number.

If the files you are comparing are extremely long, the tool could run out of
memory while attempting to perform the file comparison. In which case, the
message, Maximum file length exceeded. Defaulting to line-by-line
comparison. appears. In a line-by-line comparison, the tool highlights the
lines containing the end statement because in performing this operation, it
finds that the last line in one file does not match the last line in the other file.

Stepping Through Differences
Because text files can be lengthy, the Comparison Tool provides toolbar
buttons to help you step through the results from one difference to the next.

To navigate through comparison results:

• Click the down arrow toolbar button to go to the next set of lines that differ.

If no additional sets of lines differ, the down arrow takes you to the end of
the file.

• Click the up arrow toolbar button to go to a previous set of lines that differ.

If no previous set of lines differ, the up arrow takes you to the beginning of
the file.

Alternatively, use the menu items Comparison > Next or Previous.

Viewing a Summary of Differences
To see a summary of differences between two text files, scroll to the bottom of
the Comparison Tool and view the list, which contains information such as:

• Number of matching lines: 52

• Number of unmatched lines in left-hand file: 12

• Number of unmatched lines in right-hand file: 15

7-55



7 Managing Files in MATLAB®

Hide Whitespace Differences in Text Comparisons
You may want to hide whitespace differences to help you distinguish between
functional changes and changes to indentation.

Use the toolbar button to toggle the display of differences only involving
whitespace characters, or select Comparison > Ignore Whitespace.

Increasing or Decreasing Line Lengths Shown for Text Files
To change the display width of a text comparison, edit the number in the
Columns visible field. Resize the window, if necessary.

For details on other comparison tool features, see “Using Features of the
Comparison Tool” on page 7-63.

Save HTML Report
Click Save As on the toolbar to save a copy of the report as an HTML file. The
tool creates a corresponding folder containing the style sheet and JavaScript
files that control the report highlighting. To preserve the highlighting, keep
the folder with the HTML file.

Note Report links for opening files in MATLAB only work in the MATLAB
Web browser.

Comparing Files with Autosave Version or Version
on Disk
From the Editor you can compare one open text file with another, or you can
choose to compare the latest version of a file in the Editor to an autosave
version or a saved version. For an example, follow these steps:

1 Open one of the text files you want to compare in the Editor.

To open the example file provided, lengthofline.m, run the following
command in the Command Window:

7-56



Comparing Files and Folders

open(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','lengthofline.m'))

2 Select Tools > Compare Against > Browse, or Save and Compare
Against if your file is modified.

Navigate to the file you want to compare against, select the file, and click
Open. To open the example file provided, select lengthofline2.m from
the folder where you found lengthofline.m. Other options available are
the following:

• To compare the open file to the Editor’s automatic copy (filename.asv),
select Tools > Compare Against > Autosave Version. For more
information, see “Autosaving Files” on page 9-85.

• To compare an open file that has been changed, but not saved, to the
saved version, select Tools > Compare Against Version on Disk

Comparing MAT-Files
To select files to compare, see “Select Files or Folders to Compare” on page
7-50.

You can use the Comparison Tool to compare two MAT-files. The tool presents
the variables in the two files side by side, which enables you to:

• View and sort by the name, size, class, and change summary of all variables.

• See which variables are common to each file and which are unique.

• Load the contents of the variables into the Variable Editor by clicking the
name of that variable.

• Load the MAT-files into the workspace by clicking a Load link.

• Save a copy of the report as an HTML file. Click Save As on the toolbar.

The Comparison Tool highlights changes in variables as follows.

7-57



7 Managing Files in MATLAB®

Change Summary Highlighting Notes

Contents changed Pink Values of the variable
differ between the two
files.

Added Green Variable only exists in
right file.

Removed Purple Variable only exists in
right file.

Identical None Variable identical in
both files.

Class changed Pink (only in Class
columns)

Variable data class
changed.

The following image shows the results when you compare two files data1.mat
and data2.mat.

7-58



Comparing Files and Folders

Comparing Binary Files
To select files to compare, see “Select Files or Folders to Compare” on page
7-50.

7-59



7 Managing Files in MATLAB®

You can use the Comparison Tool to compare two binary files such as DLL
files or MEX-files. Also, you can select the Binary comparison type for any
pair of files with a choice of comparison types.

• If the files are the same, the tool displays the message: The files are
identical.

• If the files differ, the tool displays the message: The files are different.
MATLAB cannot display the differences between files of these
types.

Comparing Folders and ZIP Files

• “Folder Comparison Report” on page 7-60

• “Highlighting of Differences” on page 7-61

• “Next Steps Using the Report” on page 7-62

Folder Comparison Report
To select items to compare, see “Select Files or Folders to Compare” on page
7-50. You can perform file list comparisons for any combinations of folders,
ZIP files, and Simulink Manifests.

When you use the Comparison Tool to compare two folders (sometimes
referred to as directories) or any file list comparison (for example, folder
versus ZIP file), a window opens and presents the contents side by side. The
tool enables you to:

• Determine the files that the comparison lists have in common.

• Determine if files with identical names that are common to both comparison
lists also have identical content.

• Open a new comparison of two files or folders that are common to both
comparison lists, but have different content.

• Open a file for viewing in the Editor.

For list comparisons, if you want to expand the list to see all files in subfolders
in one report, select the Include subfolders check box when selecting items

7-60



Comparing Files and Folders

to compare. If you do not include subfolders, you can click compare links in
the report to open a new comparison of two folders with changed content.

Highlighting of Differences
The Comparison Tool displays the contents of the lists side by side and
highlights files and subfolders that do not match. The following table
describes how the tool highlights each type of change. The status message
(such as identical or contents changed) appears in the Change Summary
column.

Change
Summary

Highlighting
for Folders

Highlighting
for Files

Notes

Contents
changed

Dark pink Pink The contents
of the files
or folders
differ. Click the
compare link to
investigate.

Added Dark green Green File or folder only
exists in the right
list.

Removed Dark purple Purple File or folder only
exists in the left
list.

Identical None None

The following image shows an example of the Comparison Tool when two
folders are compared. The results are sorted by Type.

7-61



7 Managing Files in MATLAB®

Next Steps Using the Report
To explore the report you can use the following tools:

• You can sort the results by name, type, size, or last modified timestamp by
clicking the column headers. For example, click the Type column header to
sort by folder and file type, as shown in the preceding figure.

• To open a new comparison of two files or folders with changed contents,
click the compare link next to file or folder names highlighted in pink.

• To open a file in the Editor, click the open link next to a file name.

If the file is present in both folders, you can click links to open the left
or right file.

7-62



Comparing Files and Folders

• If subfolders are very large and contain many files, analysis continues in
the background. The tool displays the number of items still to be compared
at the top of the report, as shown in the next figure. You can click the links
to Skip Current item or Cancel All to stop further analysis.

• For details on other comparison tool features, see “Using Features of the
Comparison Tool” on page 7-63.

Using Features of the Comparison Tool
You can use the Comparison Tool for the following tasks:

• “Selecting Files or Folders to Compare from the Comparison Tool” on page
7-63

• “Exchanging the Left and Right Sides of the Report” on page 7-64

• “Refreshing the Report to Show Updated Files” on page 7-64

• “Finding Text” on page 7-64

• “Viewing New Comparisons” on page 7-64

• “Viewing Previous Comparisons” on page 7-65

Selecting Files or Folders to Compare from the Comparison Tool
To compare two files or folders from the Comparison Tool, follow these steps:

1 Select Desktop > Comparison Tool to open the tool.

The Comparison Tool opens a window that is empty, except for the title bar,
a menu bar, and a toolbar.

2 Compare files or folders by clicking the New comparison button or by
selecting File > New Comparison.

The dialog box Select Files or Folders for Comparison appears.

7-63



7 Managing Files in MATLAB®

3 In the dialog box, select two files or folders to compare. Use the drop-down
lists or the Browse buttons to locate and select the items that you
want to compare.

You also can drag and drop a file or folder from Windows Explorer to the
left and right file and folder fields.

4 Optionally, choose the comparison type you want to use. Either use the
default Comparison type value, or if multiple comparison types are
available, select a different one from the list. For example, for text files you
could select text or binary comparison types.

5 Click Compare.

Exchanging the Left and Right Sides of the Report
To move the file or folder on the left side to the right side and vice versa, select

File > Swap Sides, or click the Swap sides button .

Refreshing the Report to Show Updated Files
After making changes to and saving the files in the Editor, update the results
in the Comparison Tool by selecting File > Refresh or clicking the Refresh
button .

Finding Text
To find a phrase in the current display, select Edit > Find, or click the Find
text button . The resulting Find dialog box is the same as the one you use
in the Command Window. For more information, see “Finding Text Currently
Displayed in the Command Window” on page 3-52.

Viewing New Comparisons
You can perform another file comparison by selecting File > New
Comparison, or by clicking the toolbar button .

New comparisons open additional tabs in the Comparison Tool.

7-64



Comparing Files and Folders

Viewing Previous Comparisons
You can see the results of previous comparisons in the current session by
selecting that comparison’s tab entry on the document bar at the bottom of
the window. If you close the Comparison Tool, the current and previous
comparisons are lost.

Function Alternative for Comparing Files and Folders
Use the visdiff function to open the Comparison Tool from the Command
Window.

visdiff(fileorfoldername1, fileorfoldername2)

For example, type:

visdiff('lengthofline.m', 'lengthofline2.m')

7-65



7 Managing Files in MATLAB®

Making Files and Folders Accessible to MATLAB

In this section...

“Files and Folders That MATLAB Can Access” on page 7-66

“How to Make Files Accessible” on page 7-66

“Determining if MATLAB Can Access a File” on page 7-68

“Ensuring MATLAB Uses the File You Want” on page 7-70

Files and Folders That MATLAB Can Access
For performance reasons, MATLAB limits where it looks for files. To run or
get help for a MATLAB program, or to load a MAT-file, the file must be in
one of these locations:

• The current folder in MATLAB

• A folder that is on the search path. See “What Is on the Search Path?”
on page 7-72

Make the following accessible to MATLAB:

• Folders containing files that you and others create.

• Folders containing files that are called by files you run.

• Subfolders containing files that you run. Making a folder accessible does
not make its subfolders accessible.

For files in @ (class) and + (package) folders, make the parent folder accessible.
For details, see “Organizing Classes in Folders”.

How to Make Files Accessible
For files that you and others create, see “Basic Options for Making Files
Accessible” on page 7-67.

To understand the differences in the basic options, and for other approaches,
see “All Options for Making Files Accessible” on page 7-67.

7-66



Making Files and Folders Accessible to MATLAB®

Basic Options for Making Files Accessible

• Store the files that you and others create in the MATLAB folder, which is on
the search path. See “Locations for Storing Your Files” on page 7-7.

• Change the current folder to the folder that contains the files.

• Add the folders that contain the files to the search path.

All Options for Making Files Accessible

Usage Recommendation

You seldom run the file. Change the current folder to the folder that
contains the file. See “Tools for Managing Files”
on page 7-2.

The file is a script
(takes no input or
output arguments).

Use the run function.

The files are in one
folder.

Put the files in the userpath folder. See
“Locations for Storing Your Files” on page 7-7.

The files are inmultiple
folders.

Add the folders to the search path. See “Adding
Folders to the Search Path” on page 7-75.

If you regularly use the files, save the changes.
See “Saving Changes to the Search Path” on page
7-79.

The files call other files
that are in multiple
folders.

1 Determine the location of all the called
files. See “Displaying Dependencies Among
MATLAB Code Files” on page 10-15.

2 Add the folders to the search path. See “Adding
Folders to the Search Path” on page 7-75.

Some files in multiple
folders have the same
name.

See “Detecting and Addressing Name Conflicts”
on page 7-70.

7-67



7 Managing Files in MATLAB®

Usage Recommendation

You use files in
different versions
of MATLAB or on
different platforms.

Modify the search path in a startup.m file. See
“Using the Search Path with Different MATLAB
Installations” on page 7-80.

You work with the
search path content
programmatically.

See the functions in the Search Path category.

Determining if MATLAB Can Access a File
The following table lists ways to determine if MATLAB has access to a file.

Option When MATLAB Can Access the
File

When MATLAB
Cannot Access the
File

Use the file. Works successfully. Produces an error.
Typical error
notifications include:

• Dialog box

• Message: ???
Undefined
function
or method
'fileName'

• Message: Cannot
find function
'fileName'

View the file
in the Current
Folder browser.

Either or both of the following are
true:

• File is in the current folder.

• File does not appear dimmed
in Current Folder browser,
assuming the Indicate

Either or both of the
following are true:

• File is in a
subfolder of the
current folder, and
the subfolder is

7-68



Making Files and Folders Accessible to MATLAB®

Option When MATLAB Can Access the
File

When MATLAB
Cannot Access the
File

inaccessible files option is
selected in “Preferences for the
Current Folder Browser” on
page 7-14.

not on the search
path.

• File appears
dimmed in
the Current
Folder browser,
assuming
the Indicate
inaccessible
files option
is selected in
“Preferences
for the Current
Folder Browser”
on page 7-14.

Select
File > Set
Path.

Set Path dialog box list includes
the file location.

The list in the Set
Path dialog box does
not include the file
location.

Run dir with
no arguments.

The result includes the file,
indicating the file is in current
folder.

The result does not
include the file.

Run path. The result includes the file
location, indicating the file is in a
folder on search path.

The result does
not include the file
location.

Run which
filename.

The result is the full path to the
file.

The result is an
error or a file with
the same name in
another location.

7-69



7 Managing Files in MATLAB®

Ensuring MATLAB Uses the File You Want

About Name Conflicts and Shadowed Files
When MATLAB has access to multiple files with the same name, these
precedence rules determine the file MATLAB uses:

• MATLAB uses the file in the current folder instead of a file in a folder
on the search path.

• MATLAB uses the file whose folder is closest to the top of the search path
instead of a file further down.

The file that MATLAB does not use is called a shadowed file. In some cases,
MATLAB warns you that a shadowed file exists.

Other name conflicts include the following:

• A file has the same name as a variable in the base workspace.

• A file has the same name as a built-in function for a MathWorks product.

When there are name conflicts, MATLAB follows these precedence rules:

• “Precedence Rules” and “File Precedence” in the MATLAB Programming
Tips documentation

• “Class Precedence and MATLAB Path”

Detecting and Addressing Name Conflicts
MATLAB might not be accessing the file that you want it to when:

• You use a file and get a warning about a potential name conflict.

• You get unexpected results.

To identify a name conflict, try using the which function.

To address a name conflict, try one of the following:

• Change the current folder.

7-70



Making Files and Folders Accessible to MATLAB®

• Move or remove folders on the search path.

• Rename or move files.

• Specify the full path or partial path to the file that you want.

• Maintain a single version of a file instead of multiple versions.

Name conflicts can arise from using files that you create. Conflicts also can
arise from using:

• Files that others create, such as from File Exchange

• A different system that has additional MathWorks products installed

• A different version of MATLAB, which could include new functions that
have the same names as your existing files

See Also

• “Built-In Functions” and “Overloaded MATLAB Functions”

• rehash and “Toolbox Path Caching in the MATLAB Program” on page 1-19

7-71



7 Managing Files in MATLAB®

Using the MATLAB Search Path

In this section...

“What Is the Search Path?” on page 7-72

“Viewing Files and Folders on the Search Path” on page 7-74

“Changing the Search Path” on page 7-75

“Using the Search Path with Different MATLAB Installations” on page 7-80

“Recovering from Problems with the Search Path” on page 7-81

“Handling Errors and Unexpected Behavior When Updating Folders” on
page 7-83

What Is the Search Path?
The search path, or path is a subset of all the folders in the file system.
MATLAB software uses the search path to locate files used with MathWorks
products efficiently. MATLAB can access all files in the folders on the search
path.

What Is on the Search Path?

• By default, folders provided with MATLAB and other MathWorks products.

These folders are under matlabroot/toolbox, where matlabroot is the
folder displayed when you type matlabroot in the Command Window.

• By default, the MATLAB userpath. See “Locations for Storing Your Files”
on page 7-7.

• Folders you explicitly add to the search path for the files you and others
create.

Adding folders to the search path is like performing an include or import
operation in other applications.

Class, package, and private folders are not on the search path. See “Files
and Folders That MATLAB Can Access” on page 7-66.

7-72



Using the MATLAB® Search Path

Order of Folders on the Search Path
The order of folders on the search path is important when two files with the
same name are in folders on the search path. MATLAB uses the file nearest
to the top of the search path. To customize the order of files on the search
path, see “Ensuring MATLAB Uses the File You Want” on page 7-70.

Relationship Between the Search Path and the System Path
The search path is not the same as the system path. Furthermore, there is no
explicit relationship between the MATLAB search path and the system path.
However, both paths help in locating files, as follows:

• MATLAB uses the search path to locate MATLAB files efficiently.

• The operating system uses a system path to locate operating system files
efficiently.

Therefore, you can issue MATLAB commands that result in the use of both
the MATLAB search path and the system path. For example, if you type
dos('tasklist &') in the MATLAB Command Window, then:

1 MATLAB uses the search path to locate and run dos.m.

2 The dos function passes 'tasklist &' to the Microsoft Windows operating
system.

3 Microsoft Windows uses the system path to locate and run tasklist.exe.

Similar behavior results when you use the MATLAB unix and system
functions or the shell escape (!). For details on using the shell escape with
MATLAB, see “Running External Programs” on page 3-8.

How MATLAB Stores the Search Path
MATLAB saves the search path information in the pathdef.m file. The
pathdef.m file is a series of full path names, one for each folder on the search
path, separated by a semicolon (;).

By default, pathdef.m is in matlabroot/toolbox/local.

7-73



7 Managing Files in MATLAB®

When you change the search path, MATLAB uses it in the current session. To
use it in future sessions, save the changes as described in “Saving Changes to
the Search Path” on page 7-79.

Viewing Files and Folders on the Search Path
MATLAB provides various ways for you to view the search path, as described
in the following sections:

• “Using the Current Folder Browser” on page 7-74

• “Using the Set Path Dialog Box” on page 7-74

• Using MATLAB Search Path functions

Using the Current Folder Browser
To determine if files or folders in the Current Folder browser are on the
search path:

1 In the Current Folder browser, right-click any file or folder, and ensure
there is a check mark next to Indicate Files Not on Path .

If there is no check mark, select Indicate Files Not on Path. A check
mark appears.

2 Hover the pointer over any dimmed file or folder in the Current Folder
browser to find out why it is dimmed.

A tooltip opens with an explanation. Frequently, the tooltip indicates that
the file or folder is not on the MATLAB path.

Using the Set Path Dialog Box
To view the entire MATLAB search path, select File > Set Path.

The Set Path dialog box opens, listing all folders on the search path.

7-74



Using the MATLAB® Search Path

Changing the Search Path
MATLAB provides various ways for you to change the search path, as
described in the following sections:

• “Adding Folders to the Search Path” on page 7-75

• “Removing Folders from the Search Path” on page 7-77

• “Changing the Order of Folders on the Search Path” on page 7-78

• “Saving Changes to the Search Path” on page 7-79

• “Specifying Startup Options in the MATLABStartup File” on page 1-15

• Using MATLAB Search Path functions

Adding Folders to the Search Path
You can add folders to the search path for just the current session, or for
both the current and future sessions.

Current Session Only. To add folders to the top of the search path for the
duration of the current session use the following method:

7-75



7 Managing Files in MATLAB®

1 From the Current Folder browser, select, and then right-click the folder
or folders to add.

2 From the context menu, select Add to Path, and then select an option:

• Selected Folders

• Selected Folders and Subfolders

To add the folder that contains an Editor document to the top of the search
path:

1 In the Editor, right-click the document tab.

Document tabs appear in the Editor only when multiple documents are
open and docked in the Editor.

2 Select Add folder-name to Search Path.

To change the ordering in the search path, follow the instructions in
“Changing the Order of Folders on the Search Path” on page 7-78.

Current and Future Sessions. To add folders to the search path for the
current session and future sessions, use the addpath function, or follow
these steps:

1 From the Current Folder browser, select File > Set Path.

The Set Path dialog box appear.

2 Click one of these buttons:

• Add Folder

• Add with Subfolders

3 In the Browse For Folder dialog box, select the folder to add to the search
path, and then click OK.

MATLAB adds the specified folder to the top of the search path.

7-76



Using the MATLAB® Search Path

If you do not want the folder at the top of the search path, see “Changing
the Order of Folders on the Search Path” on page 7-78.

4 Keep or cancel the search path changes:

• To use the newly modified search path only in the current session, click
Close.

• To reuse the newly modified search path in the current session and
future sessions, click Save, and then click Close.

For details on where to save the file, see “Saving Changes to the Search
Path” on page 7-79.

• To undo your changes, click Revert, and then click Close.

• To restore the default search path, click Default, and then click Close.
See “Restoring the Default Search Path” on page 7-80.

Removing Folders from the Search Path
You can remove folders from the search path for just the current session, or
for both the current and future sessions.

For the Current Session Only. To remove one or more folders from the
search path:

1 Select and right-click the folder or folders to remove.

2 From the context menu, select Remove from Path, and then select an
option:

• Selected Folders

• Selected Folders and Subfolders

To remove the folder that contains an Editor document from the search path:

1 In the Editor, right-click the document tab.

Document tabs appear in the Editor only when multiple documents are
open and docked in the Editor.

2 Select Remove folder-name from Search Path.

7-77



7 Managing Files in MATLAB®

For Current and Future Sessions. To remove folders from the search
path for the current and future sessions, use the rmpath function, or follow
these steps:

1 Open the Set Path dialog box by selecting File > Set Path.

2 Select the folders to remove from the search path.

3 Click Remove.

4 Apply the changes:

• To use the newly modified search path only in the current session, click
Close.

• To reuse the newly modified search path in the current session and
future sessions, click Save.

For details on where to save the file, see “Saving Changes to the Search
Path” on page 7-79.

• To restore the default search path, click Default. See “Restoring the
Default Search Path” on page 7-80.

5 Click Close.

Changing the Order of Folders on the Search Path
Change the order of folders in the search path when files with the same name
appear in multiple folders on the search path. When you specify such a file,
MATLAB uses the one found in the folder nearest to the top of the search path.

Moving Folders to Various Positions on the Search Path. To change the
order of folders on the search path:

1 Open the Set Path dialog box by selecting File > Set Path.

2 Select the folders to move on the search path.

3 Click one of the Move buttons, such as Move to Top. The order of the
folders changes.

4 To use the modified search path in future sessions, click Save.

7-78



Using the MATLAB® Search Path

If you do not save the changes, the newly modified search path remains in
effect until you end the current MATLAB session.

5 Click Close.

Note The MATLAB (userpath) folder automatically moves to the top of the
search path the next time you start MATLAB. See “Locations for Storing
Your Files” on page 7-7.

Moving a Folder to the Top or Bottom of the Search Path. To move a
folder to the top or bottom of the search path, use the path function.

Saving Changes to the Search Path
Changes you make to the search path always remain in effect during the
current MATLAB session. For MATLAB to use the changed search path in
future sessions, save the search path, which updates the pathdef.m file.

Note The MATLAB (userpath) folder automatically moves to the top of the
search path the next time you start MATLAB. See “Locations for Storing
Your Files” on page 7-7.

Ways to Save Changes. To save changes to the search path, do one of
the following:

• Click Save in the Set Path dialog box. See “Using the Set Path Dialog
Box” on page 7-74.

• Use the savepath function.

Where to Save the Search Path File. Save the search path to the default
location, matlabroot/toolbox/local, so MATLAB can locate it.

If you do not have write access to the default location, MATLAB prompts you
for a different location. Choose the MATLAB startup folder.

7-79



7 Managing Files in MATLAB®

Restoring the Default Search Path. The default search path contains
only folders provided by MathWorks.

To restore the default search path, do one of the following:

• Click Default in the Set Path dialog box. See “Using the Set Path Dialog
Box” on page 7-74. This method also adds the userpath folder. See
“Locations for Storing Your Files” on page 7-7.

• Use the restoredefaultpath function.

See also “Recovering from Problems with the Search Path” on page 7-81.

Using the Search Path with Different MATLAB
Installations

Using the Search Path with Different Versions
The default search path changes for each MATLAB version because the
default folders that come with the products change. Different MATLAB
versions cannot use the same pathdef.m file.

To use your files with a new MATLAB version or with multiple versions, do
one of the following:

• For each version, add the folders containing your files to the search path.
Save the search path where that version of MATLAB can access it.

• Instead of changing the pathdef.m file, include addpath statements in the
startup.m file. Use the same startup.m file with the multiple versions
of MATLAB.

Using the Search Path with Different Platforms
To use your files with MATLAB on different platforms, include addpath
statements in the startup.m file. For more information, see “Specifying
Startup Options in the MATLABStartup File” on page 1-15.

7-80



Using the MATLAB® Search Path

Recovering from Problems with the Search Path
When there is a problem with the search path, you cannot use MATLAB
successfully.

You could experience search path problems when:

• You save the search path on a Windows platform, and then try to use the
same pathdef.m file on a Linux platform.

• The pathdef.m file becomes corrupt, invalid, renamed, or deleted.

• MATLAB cannot locate the pathdef.m file.

For example, when you start MATLAB, if a message like the following
appears, it indicates a problem with the search path:

Warning: MATLAB did not appear to successfully set the search
path...

To recover from problems with the search path, try the following steps.
Proceed from one step to the next only as necessary.

1 Ensure MATLAB is using the pathdef.m file you expect:

a Run

which pathdef

b If you want MATLAB to use the pathdef.m file at another location, make
corrections. For example, delete the incorrect pathdef.m file and ensure
the correct pathdef.m file is in a location that MATLAB can access. See
“Where to Save the Search Path File” on page 7-79.

2 Look for and correct problems with the pathdef.m and startup.m files:

a Open pathdef.m and startup.m in a text editor. Depending on the
problem, you might not be able to open the pathdef.m file.

b Look for obvious problems, such as invalid characters or path names.

c Make corrections and save the files.

d Restart MATLAB to ensure that the problem does not recur.

7-81



7 Managing Files in MATLAB®

3 Try to correct the problem using the Set Path dialog box:

a Restore the default search path and save it. See “Using the Set Path
Dialog Box” on page 7-74. Depending on the problem, you might not be
able to open the dialog box.

b Restart MATLAB to ensure that the problem does not recur.

4 Restore the default search path using functions:

a Run restoredefaultpath, which sets the search path to the default and
stores it in matlabroot/toolbox/local.

b If restoredefaultpath seems to correct the problem, run savepath.

c Restart MATLAB to ensure that the problem does not recur.

Depending on the problem, a message such as the following could appear:

The path may be bad. Please save your work (if desired), and quit.

5 Correct the search path problems encountered during startup:

a Run

restoredefaultpath; matlabrc

Wait a few minutes until it completes.

b If there is a pathdef.m file in the startup folder, it caused the problem.
Either remove the bad pathdef.m file or replace it with a good pathdef.m
file. For example, run:

savepath('path_to_your_startup_folder/pathdef.m')

See “Startup Folder for the MATLAB Program” on page 1-8.

c Restart MATLAB to ensure that the problem does not recur.

After correcting problems with the search path, make any changes to run your
files. For example, add the userpath folder or other folders to the search path.

7-82



Using the MATLAB® Search Path

Handling Errors and Unexpected Behavior When
Updating Folders
You can encounter errors or unexpected behavior when you try to delete,
rename, or move folders that:

• Are on the search path

• Contain subfolders that are on the search path

The behavior varies by platform because it depends on the behavior of similar
features in the operating system.

If your task fails and the error message indicates it is because the folder
is on the search path, then:

1 Remove the folder from the search path.

2 Delete, rename, or move the folder.

3 Add the folder to the search path.

7-83



7 Managing Files in MATLAB®

Related Topics for Managing Files
• “Comparing Files and Folders” on page 7-50

• Chapter 10, “Tuning and Managing MATLAB Code Files”

• Chapter 13, “Source Control Interface”

• Chapter 8, “File Exchange — Finding and Getting Files Created by Other
Users”

7-84



8

File Exchange — Finding
and Getting Files Created
by Other Users

• “Before Using File Exchange” on page 8-2

• “How To Use the File Exchange Desktop Tool” on page 8-5

• “Finding Files in File Exchange — Searching and Using Tags” on page 8-13

• “Viewing and Sorting the List of Files in File Exchange” on page 8-28

• “Viewing Details About a File” on page 8-30

• “Downloading Files from the File Exchange Repository” on page 8-32

• “Best Practices for Using Files Provided by Other Users” on page 8-37

• “Contributing to the File Exchange Repository” on page 8-39

• “Frequently Asked Questions About File Exchange” on page 8-42



8 File Exchange — Finding and Getting Files Created by Other Users

Before Using File Exchange

In this section...

“What Is File Exchange?” on page 8-2

“What You Need to Use File Exchange” on page 8-2

“Ways to Access the File Exchange Repository” on page 8-3

What Is File Exchange?
File Exchange lets you use files that were created by other users. Users have
submitted thousands of files to a repository located at the MathWorks Web
site, that include:

• MATLAB program files

• Simulink models

• Video demos

Use File Exchange to find a file you want and download it for use in MATLAB.
Using the files saves you time, provides new ideas for your own work, and
extends the set of features provided with MathWorks products.

What You Need to Use File Exchange
To access the repository, you need:

• An Internet connection

If your network uses a proxy server to access the Internet, specify the
proxy server settings. For more information, see “Specifying Proxy Server
Settings” on page 2-104.

• A MathWorks Account. If you do not have an account, create one when you
open the File Exchange desktop tool. Use the Create an account link
in the login window.

There is no cost to create an account or to use files in the File Exchange
repository.

8-2



Before Using File Exchange

Ways to Access the File Exchange Repository
There are two ways to access the repository:

• File Exchange tool in the MATLAB desktop. See “How To Use the File
Exchange Desktop Tool” on page 8-5.

• Web interface. Select Help > Web
Resources > MATLAB File Exchange, or go to
http://www.mathworks.com/matlabcentral/fileexchange/

Both the desktop tool and Web interface provide similar functionality. Use
either to find, view details for, download, and provide feedback about files in
the repository. There are some differences.

When to Use the Desktop Tool
Use the desktop tool when you want to:

• Work within the MATLAB desktop, as a natural part of your workflow

• Use multiple tags to find files

• Use search words and tags together to find files

When you use the File Exchange desktop tool, you can access only those files
that are licensed under the BSD license. As a result:

• The desktop tool could report fewer matches than the Web interface reports.

• You might not find a file using the desktop tool that you can find using
the Web interface.

When to Use the Web Interface
Use the Web interface when you want to:

• Submit files to the repository.

• Use File Exchange in a Web browser, without starting MATLAB.

• View a list of all authors, monitor changes to files with a watch list, and
use other related features.

• View the complete list of files that match your criteria.

8-3

http://www.mathworks.com/matlabcentral/fileexchange/


8 File Exchange — Finding and Getting Files Created by Other Users

For performance reasons, the desktop tool does not list all matches at once.
The desktop tool lists a maximum of 50 matches at once. You can view the
other files in the desktop tool by changing your criteria.

8-4



How To Use the File Exchange Desktop Tool

How To Use the File Exchange Desktop Tool

In this section...

“Steps for Using File Exchange” on page 8-5

“Example — Finding and Downloading a File in File Exchange” on page 8-6

Steps for Using File Exchange

1 Open the tool by selecting Desktop > File Exchange.

2 In the login window, provide the e-mail address and password for your
MathWorks Account.

For more information, see “What You Need to Use File Exchange” on page
8-2.

After logging in, File Exchange displays:

• The most popular tags for all files in the repository. Tags are keywords
that users associate with files. The more frequently users apply a tag,
the more popular it is.

• The 50 most recently submitted files

3 Find files. In general, the most efficient way to begin is by entering search
words.

For more information, see “Finding Files in File Exchange — Searching
and Using Tags” on page 8-13.

4 Refine results by selecting relevant tags, which you can see in cloud or list
view. In cloud view, the font size of the tag indicates its popularity.

For more information, see “Using Tags to Find Files in File Exchange”
on page 8-14.

5 Look for files you want to use. If you do not see any files you want, see
other results by changing the sort order, the search words, or the selected
tags. File Exchange lists up to 50 different files.

8-5



8 File Exchange — Finding and Getting Files Created by Other Users

For more information, see “Viewing and Sorting the List of Files in File
Exchange” on page 8-28.

6 View more details about a file by clicking the file name in the list of files.
The file details page opens.

For more information, see “Viewing Details About a File” on page 8-30.

7 Get a file you want to use by clicking the Download button at the top of
the file details page.

For more information, see “Downloading Files from the File Exchange
Repository” on page 8-32

8 Use a downloaded file with MATLAB software.

If you have problems with the file, see “Best Practices for Using Files
Provided by Other Users” on page 8-37.

9 Provide your rating and comments, and add tags to the file using the
Submit area at the bottom of the file details page.

For more information, see “Contributing to the File Exchange Repository”
on page 8-39.

10 When you finish using the tool, close it or log out.

If you have questions while you work, see the Frequently Asked Questions
(FAQ) by clicking the Help button .

Example — Finding and Downloading a File in File
Exchange
This example looks for files to help you analyze voice signals.

Note The File Exchange repository changes daily. Your results could differ
from this example.

8-6



How To Use the File Exchange Desktop Tool

1 Select Desktop > File Exchange, and log in to your MathWorks Account.

File Exchange:

• Shows the most popular tags for all files in the repository. For the
example, the most popular tags are data export, data import, etc.

• Lists the 50 most recently submitted files, with 10 files per page. For the
example, the most recently submitted file is flattin/merging nested
cells.

• Reports the total number of files in the repository accessible to File
Exchange in the desktop (have a BSD license). For the example, there
are 3,901 files.

2 Type signal in the search field.

8-7



8 File Exchange — Finding and Getting Files Created by Other Users

File Exchange:

• Reports that 277 files contain signal or variations of it in the title, tag,
or description.

• Lists 50 of the 277 matches, with the most recently submitted, Find
and Replace, at the top of page 1.

• Shows the most popular tags associated with the 50 files listed:
aerospace, automotive, etc.

For more information, see “Using Search to Find Files in File Exchange”
on page 8-13.

3 Because there are no obvious results or tags of interest, change the criteria.
Change the sort order to show results that have the highest ratings first by
clicking the Rating column header.

8-8



How To Use the File Exchange Desktop Tool

File Exchange:

• Lists the 50 highest rated files among the 277 matches. The most highly
rated result is Status / progress indicator.

• Shows the most popular tags associated with the 50 files listed.

- The audio processing tag is now among the most popular.

- The automotive tag is no longer among the most popular tags for the
50 files listed.

For more information, see “Sorting the List of Files in File Exchange” on
page 8-29.

4 Narrow the results by clicking the audio processing tag.

File Exchange:

8-9



8 File Exchange — Finding and Getting Files Created by Other Users

• Reports that 20 files are associated with the audio processing tag or
variations of it, and have signal in the title, tag, or description.

• Shows the popular tags associated with the 20 files listed.

For more information, see “Finding Files Using Tags” on page 8-16.

5 Scroll through the list of files on the first page. Speech Analysis using
LPC looks like it could be useful. Select the file name in the list of files.

File Exchange replaces the list of files with the details page for Speech
Analysis using LPC. On the details page, view additional information to
decide if you want to use the file. For example, the details page reports
that the file requires the Data Acquisition Toolbox™ and Signal Processing

8-10



How To Use the File Exchange Desktop Tool

Toolbox products. For more information, see “Viewing Details About a
File” on page 8-30.

6 Download the file to the current folder:

a In the details page, open the menu on the Download button.

b From the button menu, select Download to Current Folder.

For more information, see “Downloading Files from the File Exchange
Repository” on page 8-32.

7 In the resulting confirmation dialog box, click Download.

8 When the download completes, File Exchange reports the list of files
and download location. Click Change Current Folder to Download
Location to access the files.

8-11



8 File Exchange — Finding and Getting Files Created by Other Users

9 Go to the Current Folder browser. The current folder is simplelpcgui and
contains the files you downloaded. Open the simplelpcgui.m file to review
it. You can run the file. For more information, see “Best Practices for Using
Files Provided by Other Users” on page 8-37.

For more options to find files, see “Example — Using Tags to Find Files in
File Exchange” on page 8-18.

8-12



Finding Files in File Exchange — Searching and Using Tags

Finding Files in File Exchange — Searching and Using Tags

In this section...

“About Finding Files in File Exchange” on page 8-13

“Using Search to Find Files in File Exchange” on page 8-13

“Finding Files by Product, Author, and Other Attributes in File Exchange”
on page 8-14

“Using Tags to Find Files in File Exchange” on page 8-14

“Clearing Your Criteria” on page 8-26

“Getting Better Results Using Search and Tags” on page 8-26

About Finding Files in File Exchange

• Find files by using search words, searching for attributes, selecting tags,
and sorting.

• You can use all the methods at the same time.

• It is more efficient to search first, and then refine the search results by
selecting tags and changing the sort order.

• Because the repository changes daily, criteria you use to find files now
could show different results when you use the same criteria later.

Using Search to Find Files in File Exchange

1 Go to the list of files.

2 Type search words in the search field and press Enter.

File Exchange finds files in the repository whose titles, descriptions, or tags
contain the search words you entered.

For an example, see “Example — Finding and Downloading a File in File
Exchange” on page 8-6 .

8-13



8 File Exchange — Finding and Getting Files Created by Other Users

Syntax for Search Words
To view guidelines for entering search words:

1 Click the arrow in the search field.

2 From the menu, select Help Searching for Files.

3 View the relevant help topic.

Finding Files by Product, Author, and Other Attributes
in File Exchange
You can search for files by their attributes, for example, files whose author is
Jones. For more information, click the arrow in the search field and select
Help Searching for Files.

Using Tags to Find Files in File Exchange

• “What Are Tags?” on page 8-14

• “Ways to View Tags” on page 8-15

• “Finding Files Using Tags” on page 8-16

• “Example — Using Tags to Find Files in File Exchange” on page 8-18

• “Applying a Tag to a File” on page 8-25

• “Adding a New Tag to a File” on page 8-25

What Are Tags?
In File Exchange:

• Tags are keywords associated with a file.

• Users create tags and apply tags to files.

• Typically, a file has more than one tag applied to it.

• There is no relationship among the tags applied to a file.

Use tags to:

8-14



Finding Files in File Exchange — Searching and Using Tags

• Find files about a topic.

• Label files that pertain to a topic.

Ways to View Tags

• “Viewing Popular Tags for a List of Files” on page 8-15

• “Viewing More Tags for a List of Files” on page 8-15

• “To See Different Tags” on page 8-16

• “Viewing Tags for a File” on page 8-16

Viewing Popular Tags for a List of Files. Popular tags are those tags users
applied most often. Multiple users can apply a tag to a file. The popularity of
a tag reflects the number of times the tag was applied by all users.

File Exchange shows popular tags above the list of files:

• When the search field is empty, File Exchange shows popular tags for the
entire repository.

• After you select a tag or perform a search, File Exchange shows the popular
tags associated with the resulting list of up to 50 files.

You can change the way that popular tags display:

• To show or hide popular tags, click Tag View.

• To see additional popular tags, make the File Exchange tool wider.

• To change the view of tags, click Cloud or List:

- Cloud view — The font size of a tag indicates its popularity.

- List view — All tags have the same font size. You can see the popularity
of a tag by the number in parentheses.

Viewing More Tags for a List of Files. When you want to see more than
just the popular tags for a list of files, clickMore Tags. The resulting window:

• Allows you to choose the view, as a cloud or a list

8-15



8 File Exchange — Finding and Getting Files Created by Other Users

• Shows the 250 most popular tags in the entire repository when the search
field is empty

• Shows all tags associated with the list of files when the search field is not
empty

• Does not show tags you already selected

• Automatically closes when you click anywhere outside of it

• Remains open if you click its top edge or drag the window by its top edge to
another location

To See Different Tags. If you do not see tags of interest in popular tags or
More Tags:

• Change the search words, remove tags, or select different tags.

• When the search field is not empty, and there are more than 50 results, you
can change the sort order to see different tags.

Viewing Tags for a File. You can view tags for a file:

• In the list of files, in the Tags column

• On the file details page, in Everyone’s Tags

For more information about Everyone’s Tags and Your Tags, click the
information button in Tags for This File.

Finding Files Using Tags

• “Selecting Tags to Find Files” on page 8-16

• “Removing Tags You Already Selected to Expand Results” on page 8-17

• “Directly Entering a Tag Name” on page 8-17

Selecting Tags to Find Files. You can select tags before or after entering
search words. In general, it is more efficient to search first, and then refine
the search results by selecting tags.

Select one or more tags from any of the following locations:

8-16



Finding Files in File Exchange — Searching and Using Tags

• Popular tags shown above the list of files

• The window that opens when you click More Tags

• The Tags column in the list of files

• Tags for This File on the file details page

After you select a tag:

• The tag name appears below the search field. Example of control tag
selected:

• tag:"tagname" appears in the search field.

• File Exchange looks for files that have variations of the selected tag
associated with them.

• File Exchange reports the files that best match all your criteria.

For example, when you select the tag control, File Exchange finds files that
have the tag controls design, pid controller, and other variations. The
reverse is not true: if you select the tag pid controller, File Exchange does
not find files with the tag control.

Removing Tags You Already Selected to Expand Results. When
selecting a tag produces too few results, remove it to see more results. To
remove a selected tag, do one of the following:

• Click the close button for the tag.

• Delete tag:"tagname" from the search field.

Directly Entering a Tag Name. When you do not see a tag but want to use
it to find files, you can directly enter the tag in the search field.

To enter the tag directly, type tag:"partial_tagname", and press Enter.

For example, if you do not see the tag control in popular tags orMore Tags,
enter tag:"control" in the search field.

For more information, click the arrow in the search field and select Help
Searching for Files.

8-17



8 File Exchange — Finding and Getting Files Created by Other Users

Example — Using Tags to Find Files in File Exchange
The example illustrates advanced aspects of using tags to find files.

You want to find files to help you compare your data, which has small sample
sizes, to known distributions.

Note The File Exchange repository changes daily, so your results could differ
from this example.

1 Open File Exchange and change the tag view by selecting List from View
tags as. For more information, see “Ways to View Tags” on page 8-15.

Among the list of tags, the statistics tag looks relevant. But because it
was applied 712 times, it could be too general. You think a distribution
tag could help, but do not see it.

8-18



Finding Files in File Exchange — Searching and Using Tags

2 Type tag:"distribution" in the search field, and press Enter. For more
information, see “Directly Entering a Tag Name” on page 8-17.

File Exchange reports 64 files that have the distribution tag or a
variation of it applied to them.

The statistics tag was applied 20 times among the 50 files listed. The
tag could be applied additional times among the 14 matches not listed.

8-19



8 File Exchange — Finding and Getting Files Created by Other Users

3 Narrow your results by selecting the statistics tag. For more
information, see “Selecting Tags to Find Files” on page 8-16.

File Exchange reports 31 files that have both the distribution and
statistics tags applied to them. The number of times the statistics tag
was applied increased from 20 to 31. Before you selected the statistics
tag, it was applied only 20 times among the 50 files listed, as described in
step 2. But there were 64 results in step 2, so the statistics tag was also
applied 11 times among the 14 results that were not listed then.

8-20



Finding Files in File Exchange — Searching and Using Tags

4 None of the popular tags are of interest. The FISHERTEST file is close
to what you want. But the description shows it as being for a 2-by-2
contingency table and you have a 2-by-3 table.

Look for a fisher tag to see if there are other files for the Fisher test:

a Select More Tags.

b From the resulting window, select the fisher tag to add it to your
criteria.

For more information, see “Viewing More Tags for a List of Files” on page
8-15.

8-21



8 File Exchange — Finding and Getting Files Created by Other Users

5 File Exchange reports one file that uses all three specified tags. The file is
not of interest.

Expand the results by removing a tag from your criteria. Remove the least
relevant tag, distribution, by clicking the close button for it. For more
information, see “Removing Tags You Already Selected to Expand Results”
on page 8-17.

8-22



Finding Files in File Exchange — Searching and Using Tags

6 File Exchange reports six files with the tags statistics and fisher
applied to them. The tags include fishers exact test 2x3 matrix,
which is what you need. Select the tag.

8-23



8 File Exchange — Finding and Getting Files Created by Other Users

7 One file has the three selected tags applied to it. The file is relevant to you,
has a good rating, and was downloaded often. Download it by clicking
the Download button.

8-24



Finding Files in File Exchange — Searching and Using Tags

Applying a Tag to a File
When a tag is associated with a file, you can apply the tag to the file to
identify it as relevant to you.

To apply a tag to a file, go to the details page for the file and use Everyone’s
Tags.

For more information, including an example, click the Tags for This File
information button on the file details page.

Adding a New Tag to a File
You can add a new tag to a file. See “Adding Tags to a File” on page 8-39.

8-25



8 File Exchange — Finding and Getting Files Created by Other Users

Clearing Your Criteria
Clear the search field. The default list of files displays, using the sort order
you last specified. For more information, see “Viewing the Default List of
Files” on page 8-28.

Getting Better Results Using Search and Tags
When too few or too many files match your criteria, try the following
suggestions to get better results.

To Get
More
Matches

To Get
Fewer
Matches

Explanation

Remove
tags.

Add tags. Because results must have all the tags you
chose, specifying fewer tags results in more
matches.

Directly
enter
partial
tag names
instead of
selecting
tags.

Select tags
or enter full
tag names.

You can get more results when you type
tag:"partial_tagname" in the search field
than when you select a tag.

For example, typing tag:"control" in the
search field instead of selecting the tag design
controller results in more matches.

Use search
words
instead of
tags.

Use tags
instead
of search
words.

You get more results by searching for a word
than by selecting a tag of the same name.

For example, typing control in the search
field instead of selecting the tag control
results in more matches.

Remove " "
from around
search
words.

Add " "
around
search
words.

Without quotation marks, you find files that
have all the search words, but not necessarily
in sequence.

Try again
in about 15
minutes.

N/A When you add a new tag and use it to find
files, File Exchange could report no files found.
It could take up to 15 minutes after adding a
new tag before you can use it.

8-26



Finding Files in File Exchange — Searching and Using Tags

To Get
More
Matches

To Get
Fewer
Matches

Explanation

Check the search field for
mistakes.

You could have inadvertently removed a
meaningful space or quotation mark. For
guidelines, click the arrow in the search field
and select Help Searching for Files

Be sure that search
attributes and values are
valid.

For correct names and values, click the arrow
in the search field and select Help Searching
for Files.

Start over by clearing the
search field.

If you want to start over instead of changing
criteria you already provided, clear the search
field.

If you have too many results, try the opposite of the suggestions:

• Add tags

• Use full tag names

• Use tags instead of search words

8-27



8 File Exchange — Finding and Getting Files Created by Other Users

Viewing and Sorting the List of Files in File Exchange

In this section...

“Viewing the List of Files in File Exchange” on page 8-28

“Sorting the List of Files in File Exchange” on page 8-29

Viewing the List of Files in File Exchange

Viewing the Default List of Files
The default list of files:

• Is what you see when you open the File Exchange tool. The search field is
empty.

• Shows the 50 files most recently submitted to the repository.

To view to the default list of files at any time:

1 Click the clear button in the search field.

2 Sort the files to show the most recently submitted files by clicking the
Submitted column header once or twice.

Viewing the List of Files that Match Your Criteria
When you perform a search, select a tag, or change the sort order, File
Exchange:

• Lists up to 50 files that best match your criteria

• Reports the total number of files in the repository that match your criteria

File Exchange does not list more than 50 results at once for performance
reasons.

To see up to 50 different files, change the search words, tags, or sort order.

8-28



Viewing and Sorting the List of Files in File Exchange

Sorting the List of Files in File Exchange
Use the sort features to help you find files you want:

• To sort files, select the Submitted, Rating, or Downloads column
header. File Exchange sorts all files in the repository that match your
search words and selected tags.

• To reverse the sort order, click the column header again.

Sorting applies to all files matching your criteria, not just to the files listed:

• When there are more than 50 reported matches, performing a sort usually
changes the list of files. It sorts not only the files listed, but all files in
the reported number of matches. It does not merely change the order of
the files listed.

• When there are 50 or fewer matches reported, sorting merely changes the
order of the files listed.

The new sort order remains in effect until you do one of the following:

• Change the sort order again

• Log out of File Exchange

• Exit MATLAB

Sorting by Number of Downloads
The File Exchange desktop tool shows the number of downloads for the last
30 days.

8-29



8 File Exchange — Finding and Getting Files Created by Other Users

Viewing Details About a File

In this section...

“Viewing the File Details Page” on page 8-30

“Viewing the Contents of a File” on page 8-30

Viewing the File Details Page
To get more information about a file than what you see in the list of files,
click the file name.

The file details page opens. It includes:

• Files included in the submission

• Required products

• File size

• Comments from users

• A full description, which can contain algorithms and code snippets

To return to the list of files from the file details page, click the back button .

Viewing the Contents of a File
To view the contents of a file, download it and open it.

To view the contents of a file without first downloading it:

1 Go to the file details page.

2 Click View More File Details.

The file details page opens on the Web interface to File Exchange.

3 Click Download Now.

4 Choose the option to open the file.

8-30



Viewing Details About a File

For submissions that include more than one file, choose the file you want
to view from the unzip tool.

8-31



8 File Exchange — Finding and Getting Files Created by Other Users

Downloading Files from the File Exchange Repository

In this section...

“About Downloading Files” on page 8-32

“Downloading from the List of Files” on page 8-32

“Downloading from the File Details Page to a Location You Choose” on
page 8-33

“The Default Folder for Downloaded Files” on page 8-33

“Which Location Should You Choose When Downloading Files?” on page
8-33

“Downloading a Submission that Consists of Multiple Files” on page 8-34

“Viewing and Locating Files You Downloaded” on page 8-34

About Downloading Files
After finding a file of interest, get the file from the repository to use it in
MATLAB.

Choose from these options when downloading files:

• Download from the list of files or from the details page

• Download to the default folder, the current folder, or another folder

Downloading from the List of Files
The file downloads to the last download folder used. If you did not previously
specify a folder, the file downloads to the default folder.

1 Go to the list of files.

2 For the file you want to download, click the download button .

3 Confirm or cancel the download in the resulting dialog boxes.

8-32



Downloading Files from the File Exchange Repository

Downloading from the File Details Page to a Location
You Choose

1 Go to the file details page.

2 Click the arrow on the Download button.

3 From the drop-down menu, select a location.

4 Confirm or cancel the download in the resulting dialog boxes.

To download a file to the last download location used, click Download on
the file details page.

The Default Folder for Downloaded Files
The default location for downloads is Documents/MATLAB/Downloads.

On your system, Documents could be My Documents or something similar.

Which Location Should You Choose When
Downloading Files?

To... Use this Location

Easily find your downloaded files Default folder

Easily run a file immediately after
downloading it

Current folder in MATLAB

Use a hierarchy of folders for
managing files

A folder you specify

8-33



8 File Exchange — Finding and Getting Files Created by Other Users

Downloading a Submission that Consists of Multiple
Files
A “file” in the File Exchange repository is a submission that can be one file or
can consist of multiple related files.

For a submission containing multiple files, File Exchange:

• Downloads a single zip file containing the files.

• Creates a folder within the download folder you specified.

• Unzips the files into the folder.

Why You Might See Multiple Folders for One Download
You could see a folder within a folder for one download.

If the author submitted the files to the repository in a folder, File Exchange
maintains the files in the folder. When you download, the standard zip and
unzip process creates a second folder level.

You can remove one of the extra folders. If you remove an extra folder, the
download history becomes inaccurate for that file.

Viewing and Locating Files You Downloaded
Use the download history to view and locate files you downloaded.

• “Viewing a Log of Files You Downloaded” on page 8-34

• “Locating a File You Downloaded” on page 8-35

• “Viewing Details for a File You Downloaded” on page 8-35

• “Clearing the Download History” on page 8-36

Viewing a Log of Files You Downloaded

1 Click the Download History button.

2 In the resulting dialog box, view the files you downloaded.

8-34



Downloading Files from the File Exchange Repository

Example of download history window:

If you changed the name or location of a downloaded file, the download history
does not reflect your changes.

Locating a File You Downloaded
To find a file you downloaded:

1 Click the Download History button.

2 In the resulting dialog box, select a file.

3 From the context menu, select Change Current Folder to Download
Location.

The folder that contains the file becomes the current folder in MATLAB.

To find files easily without using the download history, always download to a
single location, such as the default folder, Downloads.

Viewing Details for a File You Downloaded
To display the file details page for a file you downloaded:

8-35



8 File Exchange — Finding and Getting Files Created by Other Users

1 Click the Download History button.

2 In the resulting dialog box, select a file.

3 From the context menu, select Find in File Exchange.

Clearing the Download History
To remove all entries in the download history dialog box:

1 Click the Download History button.

2 In the resulting dialog box , click the Clear History button.

8-36



Best Practices for Using Files Provided by Other Users

Best Practices for Using Files Provided by Other Users

In this section...

“Ensure MATLAB Can Access the File” on page 8-37

“Consult the File Details Page” on page 8-37

“Look for Updates to the File” on page 8-37

“Read the File” on page 8-38

“Ask Questions” on page 8-38

Ensure MATLAB Can Access the File
To ensure that MATLAB can access the file, the file must be in the current
folder or its folder must be on the MATLAB search path. Here is one method
to use:

1 Always choose the default Downloads folder as the download location

2 Add the Downloads folder and all its subfolders to the search path.

For more information, see “Adding Folders to the Search Path” on page
7-75.

Consult the File Details Page
Review relevant information on the file details page, including:

• The description, which can include advice.

• Required products, as reported by the author.

• The release number (version) for MATLAB, as reported by the author. If
you use a different release, the file might not run as expected.

• Comments provided by other users, which can include tips and
workarounds.

Look for Updates to the File
A newer version of the file could address issues you have. Here are ways to
find out about changes:

8-37



8 File Exchange — Finding and Getting Files Created by Other Users

• View the last date the file changed on the file details page.

• View a history of changes made to the file. To see the changes, go to the file
details page and click View More File Details. The file details page at
MATLAB Central opens, and includes the log of updates.

• Get notification of changes to a file by adding the file to your watch list.
To use the watch list, go to the file details page and click View More File
Details. The file details page at MATLAB Central opens. On the page,
select Watch this File.

When you download the new version of the file to the same location as the
existing version, File Exchange:

• Replaces the existing version, if you have not changed the file.

• Changes the extension for the existing version to .bak, if you had changed
the file.

Read the File
You can learn more about how a file works by reviewing it:

• Open the file and skim the comments and code. Look for potential function
or variable name conflicts between your files and the downloaded files.
For more information, see “About Name Conflicts and Shadowed Files”
on page 7-70.

• Look for a readme or related file, which could have been provided in the
download folder.

Ask Questions
If you still need help to use the file, try either of the following:

• Present your question in a comment about the file. For more information,
see “Providing Comments About a File” on page 8-41.

• Contact the author. Select the author name on the file details page to
display the author profile, which includes contact information.

8-38



Contributing to the File Exchange Repository

Contributing to the File Exchange Repository

In this section...

“How You Can Contribute to the Repository” on page 8-39

“Adding Tags to a File” on page 8-39

“Removing Tags from a File” on page 8-40

“Rating a File” on page 8-40

“Providing Comments About a File” on page 8-41

“Submitting Your Files to the Repository” on page 8-41

How You Can Contribute to the Repository
File Exchange is a valuable resource because of the contributions of users
like you.

You can contribute by:

• Adding tags for existing files

• Providing feedback for files you use by rating the files and adding comments

• Submitting your own files

Adding Tags to a File

1 Go to the file details page.

2 In the Add New Tags field near the bottom of the page, type the name
of the tag to add:

• To add multiple tags at once, separate each tag with a space.

• To add a tag that has multiple words, put the words inside quotation
marks. For example "pid controller".

• You can enter up to 64 characters for a tag name, including spaces. File
Exchange truncates characters after the 64th.

3 Click Submit:

8-39



8 File Exchange — Finding and Getting Files Created by Other Users

• Your Tags includes the tag.

• Everyone’s Tags includes the tag. If the tag had already been applied
to the file, the number of times the tag was applied to the file increases
by one. The tag becomes more popular.

• It could take up to 15 minutes until you can use the newly added tag in
File Exchange.

For more information, including an example, click the Tags for This File
information button on the file details page.

Removing Tags from a File
You have permission to remove tags you added to a file. You cannot remove
tags added by other users.

To remove a tag:

1 Go to the file details page.

2 In the Tags for This File area, under Your Tags, click - (the remove
button) for the tag you want to remove.

After removing a tag:

• Your Tags no longer includes the tag.

• If other users applied the tag to the file, the tag remains in Everyone’s
Tags. The number of times that tag was applied to the file decreases by one.

Rating a File
Assign a number of stars to rate a file:

1 Go to the file details page.

2 Go to Rate This Submission at the bottom of the page.

3 Click a star. For example, click the third star from the left to assign a
rating of three stars.

4 Click Submit.

8-40



Contributing to the File Exchange Repository

If you enter a rating but do not want to submit it, use the back button to leave
the file details page.

To change a rating you already submitted, rate the file again. It would be
helpful to add a comment about why you changed your rating. File Exchange
maintains only your most recent rating. File Exchange reports the number
of times users rated a file. When you rate a file more than once, the number
of ratings includes all the times you rated a file.

It could take up to 15 minutes until your rating appears in the file list in
File Exchange.

Providing Comments About a File
Provide feedback about a file you downloaded. Use comments to let the
author and other users know:

• What was useful

• What was problematic

• Ways of using the file

To add comments for a file:

1 Go to the file details page.

2 Go to Add Comments at the bottom of the page.

3 Type your comments in the field.

4 Click Submit.

Submitting Your Files to the Repository
Use the Web interface to submit your own files to the File Exchange
repository. Click this link to go directly to the page where you can submit
your file: MATLAB Central File Exchange — Submit New File

8-41

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do


8 File Exchange — Finding and Getting Files Created by Other Users

Frequently Asked Questions About File Exchange

In this section...

“What Is File Exchange?” on page 8-42

“How Do I Use File Exchange?” on page 8-42

“How Does the File Exchange Desktop Tool Relate to File Exchange on
the Web Site?” on page 8-43

“Why Do I See Only 50 Files and How Can I See More?” on page 8-43

“What Are Tags and How Do I Use Them?” on page 8-44

“What Are the Tags Above the List of Files?” on page 8-44

“How Can I See Other Tags?” on page 8-44

“Why Are the Tags Changing?” on page 8-45

“Is Search Looking Inside Files?” on page 8-45

“How Can I Start Over When Looking for Files?” on page 8-45

“How Can I Choose Where to Download a File To?” on page 8-46

“How Do I Contribute My Files to the Repository?” on page 8-46

What Is File Exchange?

• The File Exchange tool allows you to find and get files created by users of
MathWorks products.

• The files are at the MATLAB Central community area of the MathWorks
Web site.

For more information, see “Before Using File Exchange” on page 8-2.

How Do I Use File Exchange?

1 Find files you want by

• Entering search words.

• Selecting tags (keywords).

8-42



Frequently Asked Questions About File Exchange

• Sorting the list of files.

2 View details for a file by clicking the file name.

3 Get a file you want to use by clicking the download button.

4 After using a file, rate it and provide comments.

For an overview, watch this video: Accessing the File Exchange from the
MATLAB Desktop.

For more information, see “How To Use the File Exchange Desktop Tool”
on page 8-5.

How Does the File Exchange Desktop Tool Relate to
File Exchange on the Web Site?

• The desktop tool accesses the File Exchange repository at MATLAB Central
on the MathWorks Web site.

• You can also access the repository using the interface at the Web site.

• Both methods of access offer the same basic features, but there are some
differences in features and results.

For more information, see “Ways to Access the File Exchange Repository”
on page 8-3.

Why Do I See Only 50 Files and How Can I See More?
File Exchange lists up to 50 files at once for performance reasons:

• By default, you see the 50 most recent submissions.

• When you search, select tags, or change the sort order, you see up to 50
files that best match your criteria.

• If the list of files does not include files you want, change your criteria.

For more information, see “Viewing and Sorting the List of Files in File
Exchange” on page 8-28.

8-43



8 File Exchange — Finding and Getting Files Created by Other Users

What Are Tags and How Do I Use Them?

• Tags are keywords that users associate with files.

• Select tags to help you find files you are interested in.

For more information, see “Using Tags to Find Files in File Exchange” on
page 8-14.

What Are the Tags Above the List of Files?
The tags shown above the list of files are the popular tags, in alphabetical
order:

• When the search field is empty, you see the most popular tags for all files
you can access in the File Exchange repository.

• After you perform a search or select tags, you see the most popular tags
associated with the resulting list of files.

You can view popular tags as a cloud or list:

• In cloud view, the font size of the tag name indicates how popular the tag is.

• In list view, the number of times the tag has been applied appears in
parentheses, numerically indicating its popularity.

For more information, see “Viewing Popular Tags for a List of Files” on page
8-15.

How Can I See Other Tags?

• Make the File Exchange tool wider, which could show additional popular
tags.

• Change the search words, selected tags, or sort order to show different
popular tags.

• Click More Tags to view more tags in a separate window.

For more information, see “Ways to View Tags” on page 8-15.

8-44



Frequently Asked Questions About File Exchange

Why Are the Tags Changing?
When you select a tag, perform a search, or change the sort order, File
Exchange looks through the repository for all files that match your criteria.
The list of files changes to show up to 50 files that match your criteria.
Because popular tags reflect the resulting list of files:

• The popular tags shown above the list of files change.

• The popularity of each tag changes:

- In cloud view, the font size changes.

- In list view, the number in parentheses changes.

For more information, see “Using Tags to Find Files in File Exchange” on
page 8-14.

Is Search Looking Inside Files?
File Exchange search does not look inside files at the code or comments.

File Exchange looks for matching words in information associated with files.
Search looks in:

• Titles

• Descriptions

• Tags

For more information about searching, click the arrow in the search field, and
select Help Searching for Files.

How Can I Start Over When Looking for Files?
Clear the search field to return to the default list of files. For more
information, see “Viewing the Default List of Files” on page 8-28.

8-45



8 File Exchange — Finding and Getting Files Created by Other Users

How Can I Choose Where to Download a File To?

• To specify the folder for your downloaded files, use the file details page to
perform the download.

• When you download from the list of files, the file downloads to the last
location you downloaded to.

For more information, see “Downloading Files from the File Exchange
Repository” on page 8-32.

How Do I Contribute My Files to the Repository?
To submit files you created to the File Exchange repository, use the Web
interface, MATLAB Central File Exchange — Submit New File.

For more information, see “Contributing to the File Exchange Repository”
on page 8-39.

8-46

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do


9

Editing and Debugging
MATLAB Code

MATLAB software provides powerful tools for creating, editing, and
debugging MATLAB code, as detailed here. For information about the
MATLAB language and writing MATLAB code files, see the Programming
Fundamentals documentation.

• “MATLAB Code Files” on page 9-2

• “Ways to Edit, Evaluate, and Debug Code” on page 9-4

• “Starting, Creating Files, and Closing the Editor” on page 9-6

• “Customizing the Editor by Setting Preferences” on page 9-13

• “Entering Statements in the Editor” on page 9-38

• “Making MATLAB Code Files More Readable” on page 9-53

• “Navigating an Open File in the Editor” on page 9-71

• “Finding Text in Files” on page 9-78

• “Saving, Printing, and Closing Files in the Editor” on page 9-83

• “Running MATLAB Files in the Editor” on page 9-87

• “Finding Errors, Debugging, and Correcting MATLAB Files” on page 9-104

• “Preventing and Identifying Coding Problems” on page 9-107

• “Debugging Process and Features” on page 9-141

• “Evaluating Subsections of Files Using Code Cells” on page 9-175

• “Debugging Functions” on page 9-202



9 Editing and Debugging MATLAB® Code

MATLAB Code Files

In this section...

“What Are MATLAB Code Files?” on page 9-2

“Creating Files from the Command Window and Command History” on
page 9-2

“Use Existing MATLAB Code and Examples” on page 9-2

What Are MATLAB Code Files?
MATLAB code files are files with a .m extension that contain MATLAB
statements and functions. The Editor provides tools for creating and
debugging these files.

Creating Files from the Command Window and
Command History
Before you begin writing MATLAB code, consider starting with existing code,
and then use the MATLAB Editor to modify that code.

You can create and run MATLAB statements in the Command Window,
modify those statements to your satisfaction, and then create a file that
includes the statements. To facilitate this process, in the Command History,
select the MATLAB statements you want to include in the file. Right-click
and select Create Script. The Editor opens a new file that includes the
statements you selected from the Command History. You can also copy the
statements from the Command History and paste them into an existing file.

Use Existing MATLAB Code and Examples
See if you can find existing MATLAB code that achieves results like what you
want. Then, copy and use that code in your own file, assuming that you have
legal permission to do so. The sections that follow provide some resources
you can use.

9-2



MATLAB® Code Files

MATLAB and Toolbox Functions
You can access and reuse the code in most MATLAB and toolbox functions
that have a .m file extension. You cannot use built-in MATLAB or built-in
toolbox functions. They are efficient, but their code is not accessible.

If a MATLAB function accomplishes results like what you want, and it is not
built in, open the function file in the Editor and use it as a basis for your file.
Be sure to save the file using a different name, but with a .m file extension in
a folder that is not in matlabroot/toolbox. For details, see “Saving Files”
on page 9-83.

Demos and Examples
The MATLAB product and its toolboxes include demonstration programs. You
can view the code in the demos and copy it for use in your own files. To see
the demos, type demo, which opens the Help browser to the Demos pane. For
more information about demos, see “Learning from Demos” on page 4-25.

There are also code examples in the online documentation. To see a list of
examples for a product, type helpbrowser to open the Help browser. In the
Contents pane, click + for a product to view the help topics, and then select

the Examples entry.

File Exchange
File Exchange enables you to use files created by others. Before creating
a file, consider seeing if someone has provided a file that achieves results
like what you need. This practice can save time and provide new ideas. In
addition, consider submitting files you create for others to use. For more
information, see Chapter 8, “File Exchange — Finding and Getting Files
Created by Other Users”.

9-3



9 Editing and Debugging MATLAB® Code

Ways to Edit, Evaluate, and Debug Code
There are several methods for creating, editing, evaluating, and debugging
files with MATLAB software.

Creating and Editing Files —
Options Instructions

MATLAB Editor For typical, interactive use of the Editor, see:

• “Starting, Creating Files, and Closing the Editor” on
page 9-6

• “Entering Statements in the Editor” on page 9-38

• “Navigating an Open File in the Editor” on page 9-71

• “Saving, Printing, and Closing Files in the Editor”
on page 9-83

Any text editor, such as Emacs or vi To specify another editor as the default
for use with MATLAB software, select
File > Preferences > Editor/Debugger, and
for Editor, specify the Text editor. Click the Help
button in the Preferences dialog box for details. Use
that editor by default, or use any other editor you open.
Regardless of the editor you use by default, you can
debug MATLAB code files using the MATLAB Editor or
debugging functions.

Debugging MATLAB Code –
Options Instructions

General debugging tips See “Finding Errors, Debugging, and Correcting
MATLAB Files” on page 9-104.

MATLAB Editor See the following:

• “Preventing and Identifying Coding Problems” on
page 9-107 to identify errors and make improvements

• “Debugging Process and Features” on page 9-141 to
help you isolate run-time problems

9-4



Ways to Edit, Evaluate, and Debug Code

Debugging MATLAB Code –
Options Instructions

MATLAB debugging functions (for use
in the Command Window)

See function alternatives in “Debugging Process and
Features” on page 9-141.

See “Customizing the Editor by Setting Preferences” on page 9-13 for
information on setting up the editing and debugging environment to meet
your needs.

For information about the MATLAB language and writing functions and
scripts, see the Programming Fundamentals documentation.

9-5



9 Editing and Debugging MATLAB® Code

Starting, Creating Files, and Closing the Editor

In this section...

“Starting the Editor” on page 9-6

“Creating New Files in the Editor” on page 9-7

“Opening Existing Files Using the Editor” on page 9-9

“Arranging Editor Documents” on page 9-11

“Closing the Editor” on page 9-11

Starting the Editor
The MATLAB Editor provides a graphical user interface for basic text editing
features for any file type, as well as for debugging MATLAB code files. The
Editor is a single tool that you can use for editing, debugging, or both. There
are various ways to start the Editor. The Editor automatically starts when
you open a document or create a new one. Once started, you can customize
the Editor to suit your needs.

This figure shows an example of the Editor opened outside of the desktop
containing an existing file.

9-6



Starting, Creating Files, and Closing the Editor

Set the right-hand text limit using
Preferences > Editor/Debugger > Display.

The * after the file name indicates
that the file has not been saved
since it was last modified.

Toolbar for
cell features.

Set breakpoints
in the alley.

Color highlight
syntax elements.

Status bar information includes
cursor line and column number.

Creating New Files in the Editor
You can edit any type of text file using the MATLAB Editor. For example,
you can open and edit an HTML file. However, you can run or debug only
MATLAB code files from the Editor.

In all cases, the Editor opens an untitled file in the MATLAB current folder.

With the Editor as the current (active) window, you can:

• Create an empty file for MATLAB code or for a text file (such as for an
XML or HTML file).

Select File > New > Script or click the New Script button on the
MATLAB desktop toolbar.

9-7



9 Editing and Debugging MATLAB® Code

• Create a file prepopulated with basic MATLAB function elements.

Select File > New > Function.

• Create a class definition file (classdef), prepopulated with basic class
structure elements.

Select File > New > Class.

• Create an enumeration class file, prepopulated with enumeration class
elements.

Select File > New > Enumeration.

When working with MATLAB, C/C++, Java, TLC, VHDL, and Verilog
programming languages, as well as XML or HTML, you can specify syntax
highlighting. In addition, for some languages, you can specify indenting
preferences. Select File > Preferences > Editor/Debugger > Language.
For details, click the Help button in the dialog box.

Other tools also provide features for creating new files. For details, see:

• “Performing Actions on Statements in the Command History Window”
on page 3-68

• “Creating New Files and Folders” on page 7-36

Function Alternative for Creating New Files
You can do either of the following:

• Create a blank unnamed file in the Editor by typing edit in the Command
Window.

• Create a blank file named filename.ext in the Editor by typing edit
filename.ext. If filename.ext exists in the current folder or on the
MATLAB search path, MATLAB opens the existing file. If filename.ext
does not exist in the current folder or on the MATLAB search path, by
default, a confirmation dialog box appears. It asks if you want to create
the named file.

9-8



Starting, Creating Files, and Closing the Editor

For more information about the confirmation dialog box, see “Confirmation
Dialogs Preferences” on page 2-132.

Opening Existing Files Using the Editor
To open an existing file or files using the Editor, choose the option that
achieves your goals, as described in this table.

Goal Steps Additional Information

Open with associated
tool

Open a file using the
appropriate MATLAB
tool for the file type.

Select File > Open or click the Open
file button on the toolbar.

For example, this option
opens a file with a .m
extension in the Editor and
loads a MAT-file into the
Workspace browser.

Open as text file

Open a file in the Editor
as a text file, even if the
file type is associated with
another application or
tool.

Select File > Open as Text. This is useful, for example,
if you have imported a
tab-delimited data file
(.dat) into the workspace
and you find you want to
add a data point. Open the
file as text in the Editor,
make your addition, and
then save the file.

Open function from
within file

Open a subfunction or
function file from within
a file in the Editor.

Position the cursor on the name within
the open file, and then right-click
and select Open file-name from the
context menu.

You also can use this
method to open a variable
or Simulink model.

For details, see “Opening a
File or Variable fromWithin
a File” on page 9-76.

9-9



9 Editing and Debugging MATLAB® Code

Goal Steps Additional Information

Reopen file

Reopen a recently used
file.

At the bottom of the File menu, select
a file.

For information on changing
the number of files on
the list, see “Setting
General Preferences for the
Editor/Debugger” on page
9-15.

Reopen files at startup

At startup, automatically
open the files that were
open when the previous
MATLAB session ended.

Select File > Preferences
> Editor/Debugger, and then select
On restart reopen files from
previous MATLAB session.

For details, see “Setting
General Preferences for the
Editor/Debugger” on page
9-15.

Open file displaying in
another tool

Open a file name
displaying in another
MATLAB desktop tool or
Microsoft tool.

Drag the file from the other tool into
the Editor.

For example, drag files from
the Current Folder browser
or from Windows Explorer.

Open file using a
function

Use the edit or open function. For example, type
the following to open
collatz.m:

edit collatz.m

If collatz.m is not on the
search path or in the current
folder, use the relative or
absolute path for the file.

For special considerations on the Macintosh platform, see “Using File Browser
GUIs on Macintosh Platforms to Navigate Within the MATLAB Root Folder”
on page 2-172.

MATLAB Code Cells in Files
Use cell mode for running sections of code and publishing. Denote MATLAB
code cells with two comment characters (%%) at the start of a line and save

9-10



Starting, Creating Files, and Closing the Editor

the file using .m as the extension. If you open a file that contains MATLAB
code cells when cell mode is enabled, then highlighting and horizontal lines
appear in the file. The Editor reflects the cell toolbar state and the cell
display preferences, such as yellow highlighting of the current cell and gray
lines between cells.

If you do not want cell mode enabled, select Cell > Disable Cell Mode. If cell
mode is disabled when you quit a MATLAB session, it is disabled the next
time you start a MATLAB session. The converse is true, as well.

The first time you open a file that contains cells, an information bar appears
below the cell toolbar, providing links for details about cell mode. Control the
display of the information bar as follows:

• Close the information bar by clicking the Close button on the right side of
the bar.

The information bar does not appear again, but you can access information
about Editor cells from the Show Cell Mode information button on the
cell toolbar.

• Hide the cell toolbar by right-clicking in the toolbar and selecting Cell
Toolbar from the context menu.

Arranging Editor Documents
You can arrange the size and location of documents you open in the Editor.
Editor documents follow the same arrangement practices as other desktop
documents. For details, see “Opening and Arranging Desktop Documents”
on page 2-20.

Closing the Editor
To close the Editor, click the Close button in the title bar of the Editor. This
button is different from the Close button in the Editor menu bar. The latter
Close button closes the current file when multiple files are open in a single
window.

9-11



9 Editing and Debugging MATLAB® Code

Close box for
Editor.

Close box for
current file.

If multiple files are open, each in a separate window, you can either:

• Close each window separately by clicking the associated Close button.

• Close all documents in all tools at once by selectingWindow > Close All
Documents.

In addition to closing the Editor files and the Editor, this choice closes
other desktop documents and their containing tools as well. For example, it
closes variables in the Variable Editor and the Variable Editor itself.

9-12



Customizing the Editor by Setting Preferences

Customizing the Editor by Setting Preferences

In this section...

“Overview of Setting Editor/Debugger Preferences” on page 9-13

“Setting General Preferences for the Editor/Debugger” on page 9-15

“Setting Display Preferences” on page 9-16

“Setting Tab and Indent Preferences” on page 9-19

“Setting Language Preferences” on page 9-20

“Setting MATLAB Language Preferences” on page 9-21

“Setting TLC Language Preferences” on page 9-28

“Setting VHDL Language Preferences” on page 9-28

“Setting Verilog Language Preferences” on page 9-29

“Setting C/C++ Language Preferences” on page 9-30

“Setting Java Language Preferences” on page 9-32

“Setting XML/HTML Language Preferences” on page 9-33

“Setting Code Folding Preferences” on page 9-34

“Setting Autosave Preferences” on page 9-35

“Additional Information About Editor/Debugger Preferences” on page 9-37

Overview of Setting Editor/Debugger Preferences
To specify the default behavior for various aspects of the Editor:

1 Select File > Preferences > Editor/Debugger.

The Preferences dialog box opens showing Editor/Debugger Preferences.

9-13



9 Editing and Debugging MATLAB® Code

2 Click next to Editor/Debugger in the left pane to view all categories of
Editor/Debugger preferences.

3 Select a category.

The preference pane for that category displays.

4 Modify preferences, and then click Apply or OK.

You can also set preferences for the Editor toolbars. For details, see “Setting
Toolbars Preferences for Desktop Tools” on page 2-156.

9-14



Customizing the Editor by Setting Preferences

Setting General Preferences for the Editor/Debugger
Select File > Preferences > Editor/Debugger to specify the preferences on
the main pane, listed here. Or click the + to see additional Editor/Debugger
preferences.

• “Editor” on page 9-15

• “Most Recently Used File List” on page 9-15

• “Opening Files in the Editor” on page 9-16

• “Automatic File Changes” on page 9-16

Editor

MATLAB Editor. Select MATLAB Editor to have the MATLAB desktop
use the built-in Editor.

Text editor. Select this option to specify that a text editor other than the
MATLAB Editor open a file with a .m extension from within MATLAB. Specify
the full path for the editor application you want to use, such as Emacs or vi.

For example, suppose you do the following:

1 Select Text editor and specify c:/Applications/Emacs.exe in the text
field.

2 Open a file by selecting File > Open in the MATLAB desktop.

The file you specify in step 2 opens in Emacs instead of in the MATLAB Editor.

If you use an editor other than the MATLAB Editor, some Editor/Debugger
preferences are still available to MATLAB. Some Editor/Debugger preferences
apply to other MATLAB tools.

Most Recently Used File List
Use this preference to specify the number of files that appear in the list of
most recently used files at the bottom of the File menu. You select a file
from the list to open it.

9-15



9 Editing and Debugging MATLAB® Code

Opening Files in the Editor

On restart reopen files from previous MATLAB session. Select this
option to specify that, when it restarts, MATLAB open the files that were
open when you last shut it down. The Editor does not open upon startup
if this option was cleared and files were open in the Editor when you last
closed MATLAB.

Automatic File Changes

Reload unedited files that have been externally modified. This option
is useful when you edit files in the MATLAB Editor and outside of MATLAB.

If you select this preference, then the Editor automatically reloads the version
of the file open outside of MATLAB, when all the following are true:

• The file is open in both the Editor and outside of MATLAB.

• You have not edited the file in the Editor since you last saved it.

• You edit and save the file outside of MATLAB.

If you clear this preference, and you change the version of the file that is
open outside of MATLAB, then MATLAB displays a dialog box. The dialog
box notifies you that the current file changed outside of MATLAB, and asks if
you want to use the latest version.

Add line termination at end of file. Select this preference to have the
Editor add a new empty line to the end of the file automatically, if the last
line in the file is not empty. This option is useful if you use your files with
other products that expect a new line (sometimes referred to as a <CR>) at
the end of the file.

Setting Display Preferences
Select File > Preferences > Editor/Debugger > Display to specify these
preferences:

• “General Display Options” on page 9-17

• “Right-Hand Text Limit” on page 9-17

9-16



Customizing the Editor by Setting Preferences

See also Desktop Preferences.

General Display Options

Highlight Current Line. Select this preference to highlight the current line,
that is, the row with the caret (also called the cursor). This preference is
helpful, for example, to see where copied text will appear when you paste it.
Then specify the color used to highlight the line.

Show line numbers. Select this preference to show line numbers along
the left edge of the Editor window. Showing line numbers helps you to use
various Editor features, such as Edit > Go To Line. When you clear this
item, line numbers do not display.

Enable datatips in edit mode. Select this preference to see data tips while
editing a MATLAB code file. By default, data tips do not display while editing
(edit mode), although they always display while debugging (debug mode). In
edit mode, the data tips display the values of variables in the base workspace,
so this is useful for MATLAB scripts rather than functions. In edit mode for a
function, the data tip for a variable displays a value if that variable also exists
in the base workspace. In this case, the data tip displays the value of the base
workspace variable, not the value of the variable in the function file.

While you are debugging, you cannot turn off the display of data tips, and
they show the value of the variables in the workspace selected in the Stack.
For more information about data tips, see “Viewing Values as Data Tips in
the Editor” on page 9-153.

Right-Hand Text Limit
By default, a gray vertical line that is 1-pixel wide appears at column 75 in
the Editor. This vertical line indicates when a line of code becomes wider
than desired. Consider setting a right-hand text limit for reasons such as
the following:

• To prevent the need to scroll from left to right to see an entire line of text
in the Editor

• To keep each line below a limit imposed by another text editor in which
you intend to view the code

9-17



9 Editing and Debugging MATLAB® Code

• To keep each line below a character limit required to ensure that the file
prints without cropped text

Consider printing a test page to determine the most appropriate value
for the printer printing the file, the margin settings for the printer, and
the font size you are using.

This limit is a visual cue only and does not prevent text from exceeding the
limit. For information on setting a value to wrap comment text at a specified
column number automatically, see “Comment Formatting” on page 9-22.

Note If the vertical line appears to be in the wrong column, it might be
because you are not using a monospaced font. See “Setting Fonts Preferences
for Desktop Tools” on page 2-141 for details.

Show line. Select this preference to display the vertical line in the Editor.
Clear it to hide the vertical line.

Placement. Type or select a new value for this field to change the column
where the vertical line appears.

The actual column number where you set this preference is most useful when
the font preference for the Editor is a monospaced font. In a monospace font,
all characters are the same width. For details, see “Setting Fonts Preferences
for Desktop Tools” on page 2-141.

Width. Type or select a value for this field to change the width (in pixels) of
the vertical line.

9-18



Customizing the Editor by Setting Preferences

Color. Click the down arrow next to the color block to open a palette of
colors from which you can choose a new color for the vertical line. Increasing
this value might improve the visibility of the vertical line on liquid crystal
displays (LCDs) and projectors.

Setting Tab and Indent Preferences
Select File > Preferences > Editor/Debugger > Tab to specify the
preferences that follow.

Tabs and Indents

Tab size. Specify the amount of space inserted when you press the Tab key.
When you change the Tab size, it changes the tab size for existing lines in
that file, unless the Tab key inserts spaces also is selected.

Tab key inserts spaces. Select this item if you want a series of spaces to be
inserted when you press the Tab key. If the item is not selected, a tab acts as
one space whose length is equal to the Tab size.

Indent size. Specify the indent size for smart indenting.

Emacs-style Tab key smart indenting. This indenting convention is
based on the style used by the Emacs editor and is like the Apply smart
indenting while typing preference. With this preference selected, lines
indent according to smart indenting preferences when you position the cursor
in a line or select a group of lines, and then press the Tab key. With this
preference selected, you cannot use tabs within a line.

See Also
The following sections provide information about additional preferences for
indenting:

• “Setting Language Preferences” on page 9-20 for additional indenting
preferences

• “Setting Keyboard Preferences for Desktop Tools” on page 2-138“Setting
Keyboard Preferences for Desktop Tools” on page 2-138 for function hints,
tab completion, and delimiter matching preferences

9-19



9 Editing and Debugging MATLAB® Code

• “Specifying Options for MATLAB Using Preferences” on page 2-124

Setting Language Preferences
MATLAB applies language preferences based on the file name extension of
the file open in the Editor.

To specify language preferences, such as syntax highlighting:

1 Select File > Preferences > Editor/Debugger > Language, for the type
of file you are editing.

2 Select the Language.

The preference dialog box displays the preferences for that language. If the
language you are using is not an option, it means that setting language
preferences for that language is not available.

3 Change preferences for the language you selected, and then click Apply.

For example, when you edit a file with a .html extension, the language
preferences set for XML/HTML apply to that file. If you have a Java file open
at the same time, the Java language preferences apply to the Java file.

File Extensions
To specify a file extension associated with the selected language:

1 Optionally, add or change the file extensions associated with the language
in the Language field by clicking the Add and Remove buttons

Changes you make to the file extensions do not apply to open files until
you close and reopen them.

2 Select a file extension from the File extensions list.

• If a file has no extension (for example, a new untitled file), MATLAB
treats it as a file with a .m extension.

• If a file has an extension, but it is not in the File extensions list,
MATLAB does not apply any language preferences to that file.

3 Click Apply.

9-20



Customizing the Editor by Setting Preferences

The following table presents the default file extensions for each language.

Language Preference Default File Extensions

MATLAB .m (uppercase or lowercase)

TLC .tlc

VHDL .vhd, .vhdl

Verilog .v

C/C++ .c, .cpp, .h, .hpp

Java .java

XML/HTML .xml, .xsl, .wsdl, .html, .htm, .shtml

For details about preferences for each language, see:

• “Setting MATLAB Language Preferences” on page 9-21

• “Setting TLC Language Preferences” on page 9-28

• “Setting VHDL Language Preferences” on page 9-28

• “Setting Verilog Language Preferences” on page 9-29

• “Setting C/C++ Language Preferences” on page 9-30

“Setting Java Language Preferences” on page 9-32

• “Setting XML/HTML Language Preferences” on page 9-33

Setting MATLAB Language Preferences
Select File > Preferences > Editor/Debugger, and then from Languages,
selectMATLAB to specify these preferences for editing MATLAB code files:

• “Syntax highlighting” on page 9-22

• “Comment Formatting” on page 9-22

• “Indenting” on page 9-23

• “File extensions” on page 9-27

See also “Setting Code Analyzer Preferences” on page 9-124.

9-21



9 Editing and Debugging MATLAB® Code

Syntax highlighting

Enable syntax highlighting.

• Select to show colors that help you identify certain constructs, like
matching if/else statements.

Click Set syntax colors to open the Colors preference pane, and specify
the colors that you want the Editor to use for syntax highlighting.

• Clear to show all text in black.

The syntax colors preferences apply to all tools that use syntax highlighting,
including the Command Window, the Command History, the Editor, and
other tools. For a description of syntax highlighting, see “Setting Colors
Preferences” on page 2-150.

Comment Formatting
You can specify where and when to wrap comments in MATLAB code files
using these preferences:

• Max width—Type a value for the maximum width for comment text (in
number of columns).

• Select where you want column counting to begin:

- Consider selecting columns from start of line when the absolute
width of the comments is important. For example, 75 columns from the
start of the line is the width that fits on a printed page when you use the
default font for the Editor.

- Consider selecting columns from start of comment when comments
are indented, and you want each block of comments to have a consistent
indent and width.

• To have MATLAB wrap comments at the Max width value as you enter
new comments in a file, select Wrap comments automatically while
typing.

Existing comments and comments that you paste into a file are unaffected.
If you want, you can wrap such comments manually.

9-22



Customizing the Editor by Setting Preferences

For information on wrapping comments manually, see “Wrapping Comments
in MATLAB Code” on page 9-45.

For information on adjusting the gray vertical line that appears by default
at the 75th column in the Editor, see the section entitled “Right-Hand Text
Limit” on page 9-17.

Example of Comment Formatting. This example demonstrates comment
wrapping settings that are useful for formatting comments for output from
the help function:

1 Set theMax width to 75 columns from start of comment.

2 Select Wrap comments automatically while typing.

3 Starting at column 12, type a comment in a MATLAB code file.

As you type the text, when you reach the 87th column, the comment
automatically continues on the next line, indenting 12 columns.

This behavior keeps comment lines contained within a block at the same
width, regardless of where the comment starts.

Indenting
You can set preferences to have MATLAB automatically apply indenting to
your MATLAB code. The indenting options you specify, however, apply only to
lines you enter after changing the preference; they do not affect indenting for
existing lines. For information on changing the indenting for existing lines,
see “Manually Applying Indenting” on page 9-54.

Apply smart indenting while typing. Select this option to specify that
you want:

• The body of loops to indent automatically within the start and end of the
loop statement.

• The lines you indent using tabs or spaces to result in subsequent lines
automatically aligning with the indented line.

• Functions to indent automatically as specified with the Function
indenting format option.

9-23



9 Editing and Debugging MATLAB® Code

After entering a new line, select Text > Decrease Indent to move text back
to a previous indent level, if you want.

Although you can manually insert tabs at the start of a line, smart
indenting might not work properly if you do. To correct selected lines, select
Text > Smart Indent.

Clear Apply smart indenting while typing to specify that you want:

• Lines to align on the left by default

• To specify indenting manually, using the Tab and space bar keys

• Functions to not indent automatically as specified by the Function
indenting format option

When you clear Apply smart indenting while typing you can still indent
functions, as specified by the Function indenting format option by:

1 Selecting the functions in the Editor.

2 Selecting Text > Smart Indent.

To set the indent size for smart indenting and the tab size for manual
indenting, see “Setting Tab and Indent Preferences” on page 9-19.

Example of Smart Indenting.

��������"���)��������������
��
�%������������������������
���	�

!��3���������"�����������
�	������%�

!������1��"�����������

9-24



Customizing the Editor by Setting Preferences

Example of Smart Indenting Cleared with Manual Tabs.

��������"���)��������������
����
�%�����3�����������%������
�!����	�

!���������������������
��%����������
���

Example of Smart Indenting Cleared Without Tabs.

��������"���)��������������
�����
������������������	�

!
���������

Function Indenting Format. Specify how functions indent in the Editor, as
follows:

1 Select or clear Apply smart indenting while typing, depending on
whether you want your function indenting choice applied automatically, as
you type code in the Editor. See “Apply smart indenting while typing” on
page 9-23 for details.

2 Choose a function indenting format. The styles for indenting functions are:

• Classic — The Editor aligns the function code with the function
declaration.

• Indent nested functions — The Editor indents the function code
within a nested function.

9-25



9 Editing and Debugging MATLAB® Code

• Indent all functions— The Editor indents the function code for both
main and nested functions.

3 For nested functions, provide an end statement at the start of a line for
each function declaration.

An end statement aligns with its function declaration only when the end
statement appears at the start of the line.

Examples of Function Indenting Format Preference. The following
image illustrates each of the function indenting formats.

9-26



Customizing the Editor by Setting Preferences

File extensions
See “File Extensions” on page 9-20 for general Language preferences.

9-27



9 Editing and Debugging MATLAB® Code

Setting TLC Language Preferences
Target Language Compiler (TLC) is an integral part of Real-Time Workshop®.
Select File > Preferences > Editor/Debugger > Language > TLC to
specify these preferences for editing TLC files:

• “Syntax highlighting” on page 9-28

• “File Extensions” on page 9-28

See also “Setting Code Analyzer Preferences” on page 9-124.

Syntax highlighting
Select the Enable syntax highlighting check box to show colors that help
you identify TLC constructs, such as commands and macros. Optionally,
change the colors used for these elements.

Commands. Color for TLC commands, such as LibBlockMatrixParameter.

Comments. Color for the comment indicator, %% or /%...%/, and its
associated text.

C Strings. Color for C strings.

Macros. Color for TLC macros.

File Extensions
See “File Extensions” on page 9-20 for general Language preferences.

Setting VHDL Language Preferences
Select File > Preferences > Editor/Debugger > Language to specify these
preferences for editing VHDL files:

• “Syntax highlighting” on page 9-29

• “File extensions” on page 9-29

9-28



Customizing the Editor by Setting Preferences

Syntax highlighting
Select the Enable syntax highlighting check box to show colors that help
you identify certain VHDL constructs, such as keywords and operators.
Specify the colors used for these elements.

Keywords. Color for VHDL keywords, such as SIGNAL.

Comments. Color for the comment indicator, -- , and its associated text.

Operators. Color for operators, such as <=.

Strings. Color for strings, such as "0000".

File extensions
See “File Extensions” on page 9-20 for general Language preferences.

Setting Verilog Language Preferences
Select File > Preferences > Editor/Debugger > Language to specify these
preferences for editing Verilog files:

• “Syntax highlighting” on page 9-29

• “File extensions” on page 9-30

Syntax highlighting
Select the Enable syntax highlighting check box to show colors that help
you identify certain Verilog constructs, such as keywords and operators.
Specify the colors used for these elements.

Keywords. Color for Verilog keywords, such as assign.

Comments. Color for the comment indicator, // , and its associated text.

Operators. Color for operators, such as =.

Strings. Color for strings, such as "Test Completed".

9-29



9 Editing and Debugging MATLAB® Code

File extensions
See “File Extensions” on page 9-20 for general Language preferences.

Setting C/C++ Language Preferences
Select File > Preferences > Editor/Debugger > Language to specify these
preferences for editing C or C++ language files:

• “Syntax highlighting” on page 9-30

• “Indenting” on page 9-30

• “File extensions” on page 9-31

Syntax highlighting
Select the Enable syntax highlighting check box to show colors that help
you identify certain C constructs, such as methods. Specify the colors used for
these elements.

Keywords. Color for keywords, such as if.

Strings. Color for terms enclosed in double quotation marks, for example,
"default".

Characters. Color for terms enclosed in single quotation marks, for example,
'a'.

Comments. Color for text following the comment indicator, //, as well as for
the block comment indicators, /* and */, and the code in between.

Preprocessor. Color for text following the preprocessor symbol, #.

Bad characters. Color for illegal characters.

Indenting
You can set preferences to specify that you want MATLAB to apply indenting
to your C/C++ files automatically. The indenting options you specify, however,
apply only to lines you enter after changing the preference; they do not affect

9-30



Customizing the Editor by Setting Preferences

the indenting for existing lines. For information on changing the indenting
for existing lines, see “Manually Applying Indenting” on page 9-54.

Apply smart indenting while typing. Select this option to specify that
you want:

• The body of loops to indent automatically within the start and end of the
loop statement

• The lines you indent using tabs or spaces to result in subsequent lines
automatically aligning with the indented line

After entering a new line, press Shift+Tab to move text back to a previous
indent level if you want.

Although you can manually insert tabs at the start of a line, be aware that
smart indenting might not work properly. Use the Text menu entry for
Smart Indent to correct selected lines.

Clear Apply smart indenting while typing to specify that you want:

• Lines to align on the left by default

• To specify indenting manually using the tab and space keys

To set the indent size for smart indenting and the tab size for manual
indenting, see “Setting Tab and Indent Preferences” on page 9-19.

For examples, see:

• “Example of Smart Indenting” on page 9-24

• “Example of Smart Indenting Cleared with Manual Tabs” on page 9-25

• “Example of Smart Indenting Cleared Without Tabs” on page 9-25

File extensions
See “File Extensions” on page 9-20 for general Language preferences.

9-31



9 Editing and Debugging MATLAB® Code

Setting Java Language Preferences
Select File > Preferences > Editor/Debugger > Language > Java to
specify these preferences for editing Java files:

• “Syntax highlighting” on page 9-32

• “Indenting” on page 9-32

• “File extensions” on page 9-33

See also “Setting Keyboard Preferences for Desktop Tools” on page 2-138
for the Editor/Debugger and Command Window and “Setting Language
Preferences” on page 9-20.

Syntax highlighting
Select the Enable syntax highlighting check box to show colors that help
you identify certain Java constructs, such as methods. Specify the colors
used for these elements.

Show methods. Text style for methods to appear in when you type them:
Bold, Italic, or Plain (no special highlighting).

Keywords. Color for keywords, such as if.

Strings. Color for terms enclosed in double quotation marks, for example,
"alive".

Characters. Color for terms enclosed in single quotation marks, for example,
'a'.

Comments. Color for text following the comment indicator, //, as well as for
the block comment indicators, /* and */, and the code in between.

Bad characters. Color for illegal characters.

Indenting
Select or clear Apply smart indenting while typing to specify whether you
want the Editor to apply indenting to your Java files when you press the

9-32



Customizing the Editor by Setting Preferences

Enter key to type in a new line. The effects are the same as those for C/C++
files. For details and examples, see the C/C++ preference for indenting.

File extensions
See “File Extensions” on page 9-20 for general Language preferences.

Setting XML/HTML Language Preferences
Select File > Preferences > Editor/Debugger > Language > XML/HTML
to specify these preferences for editing XML, XSL, WSDL, HTML, HTM,
and SHTML files:

• “Syntax highlighting” on page 9-33

• “Indenting” on page 9-34

• “File extensions” on page 9-34

Syntax highlighting
Select the Enable syntax highlighting check box to show colors that help
you identify XML, WSDL, and HTML constructs, such as elements and tags.
Optionally, change the colors used for these items.

Attribute name. Color for attribute names.

Attribute value. Color for values, such as the source for an image, for
example "myimage.gif", in <img src= myimage.gif >.

CDATA section. Color for a CDATA section in XML files.

Character. Color for characters and entities, such as the nonbreaking space,
&nbsp.

Comment. Color for text contained within comment indicators, <!-- and -->.

DOCTYPE declaration. Color for DOCTYPE declarations.

Error. Color for invalid entries, such as <+1> for font size, which is deprecated
in favor of style sheets in the HTML 4.01 specification.

9-33



9 Editing and Debugging MATLAB® Code

See the W3C Web site for details.

Operator. Color for operators, such as the equal sign (=).

Processing instruction. Color of the instructions to the application that
processes the XML file.

Tag. Color for tags and elements, such as <font> or <img>.

Indenting
Select or clear Apply smart indenting while typing to specify whether
you want the Editor to apply indenting to your files when you press the
Enter key. The effects are the same as those for C/C++ files. For details and
examples, see the C/C++ preference for indenting.

File extensions
See “File Extensions” on page 9-20 for general Language preferences.

Setting Code Folding Preferences
Select File > Preferences > Editor/Debugger > Code Folding to set
these preferences for hiding and revealing code in MATLAB files, including
function and class code, function and class help code, programming control
blocks, and so on.

• “Enable Code Folding” on page 9-34

• “Enable Code Folding by Programming Construct” on page 9-35

• “Fold Initially” on page 9-35

See also “Making MATLAB Code Files More Readable” on page 9-53, and
“Working with Functions in Files”.

Enable Code Folding
Select this option to enable code folding in MATLAB files; clear this option to
disable code folding in MATLAB files. (Use the table that appears below this
option to enable and disable code folding for selected programming constructs
within a MATLAB file.)

9-34



Customizing the Editor by Setting Preferences

This option has the following effects:

• If you select this option, code folding is enabled for all programming
constructs that you enable in the table that appears below this option in
the Preferences dialog box.

• If you clear this option, code folding is disabled for all programming
constructs, regardless of the programming constructs that you may have
previously enabled in the table that appears below this option in the
Preferences dialog box.

Enable Code Folding by Programming Construct
If you select the Enable code folding option, you can independently enable
or disable code folding for individual programming constructs (function code,
function help, programming control blocks, class code, and so on) by selecting
or clearing the Enable check box that corresponds to each construct in the
table on the Preferences dialog box. By default, code folding is enabled for all
programming constructs except if/else blocks and switch/case blocks.

Fold Initially
If you enable code folding for a programming construct, you can specify how
the Editor displays that construct the first time that you open a MATLAB file
that existed prior to MATLAB version 7.5. Select or clear the Fold Initially
check box associated with a construct to direct the Editor to collapse or
expand the associated construct, respectively, the first time you open a file
that existed prior to MATLAB version 7.5 (R2007b) using MATLAB version
7.5 or later.

Setting Autosave Preferences
Select File > Preferences > Editor/Debugger > Autosave to specify these
preferences for the Editor’s autosave feature.

Enable autosave in the MATLAB Editor
The MATLAB Editor automatically saves a copy of the current version of the
file you are editing. Clear this check box if you do not want the MATLAB
Editor to save the copy automatically.

9-35



9 Editing and Debugging MATLAB® Code

Save Options

Save every n minutes. Specify how often you want the Editor to save,
automatically, a copy of the file you are editing.

Save untitled files. Select this check box if you want the Editor to save
automatically a copy of new files that you have not yet saved, which are
therefore untitled. If selected, the first autosave file is Untitled.asv. If
the folder already contains a file named Untitled.asv, the autosave file is
Untitled2.asv, and so on, for additional unnamed files.

If the autosave feature creates Untitled.asv and you later save the file as
filename.m, the next autosave version is filename.asv. Untitled.asv
remains until you delete it.

Close Options

Automatically delete autosave files. With this preference selected,
MATLAB deletes the autosave file when you close the source file in the Editor.

Filename
Specify the extension used for autosave files. The default setting for Microsoft
Windows platforms is the extension .asv (for autosave), making the autosave
file filename.asv. For Microsoft Windows and UNIX platforms, you can
select Replace extension with and specify any extension.

For UNIX platforms, the default is Append file with the tilde (~) character,
making the autosave file filename.m~. For Windows and UNIX platforms,
you can select Append file with and specify a different string to append to
the file.

Location
Specify the full path for the folder where you want autosave files stored. You
can specify a single folder for all autosave files, such as a folder you create
called autosave_files. For the Editor to create an autosave file, you must
have write permission for the specified location.

If you do not specify a location, MATLAB:

9-36



Customizing the Editor by Setting Preferences

• Stores the autosave file for each named file in the same folder as the source
file, that is, the file you are editing.

• Stores the autosave file for each untitled file in the folder that was the
current folder when you opened the file.

Additional Information About Editor/Debugger
Preferences
Additional information that relates to the Editor and preferences includes:

• “Setting Autosave Preferences” on page 9-35

• “Setting Fonts Preferences for Desktop Tools” on page 2-141

• “Setting Colors Preferences” on page 2-150

• “Setting Color Preferences for Programming Tools” on page 2-154

• “Specifying Options for MATLAB Using Preferences” on page 2-124

• “Setting Keyboard Preferences for Desktop Tools” on page 2-138

9-37



9 Editing and Debugging MATLAB® Code

Entering Statements in the Editor

In this section...

“Using Command Window Features in the Editor” on page 9-38

“Entering Text in Insert or Overwrite Mode” on page 9-39

“Changing the Case of Selected Text” on page 9-39

“Undoing and Redoing Editor Actions” on page 9-40

“Adding Comments” on page 9-40

“Completing Statements in the Editor — Tab Completion” on page 9-46

Using Command Window Features in the Editor
After opening an existing file or creating a new file in the Editor, enter
statements in the file. Use the same practices as for entering statements
in the Command Window as described in Chapter 3, “Running Functions
— Command Window and History”:

• “Case and Space Sensitivity” on page 3-17

• “Entering Multiple Lines Without Running Them” on page 3-18

• “Entering Multiple Functions in a Line” on page 3-20

• “Entering Multiple-Line (Long) Statements Using Line Continuation” on
page 3-20

• “Suppressing Output” on page 3-47

• “Formatting and Spacing Numeric Output” on page 3-48

• “Matching Delimiters (Parentheses)” on page 3-24

• “Viewing Function Syntax Hints While Entering a Statement” on page 3-33

• “Getting Help for a Function Shown in the Command Window or Editor”
on page 3-38

• “Finding Functions Using the Function Browser” on page 3-40

9-38



Entering Statements in the Editor

Entering Text in Insert or Overwrite Mode
On Windows and UNIX platforms, the Editor enables you to enter text in
either insert or overwrite mode. By default, when you enter text in the Editor,
you use insert mode. In this mode, the Editor inserts the text you type within
the existing text. In overwrite mode, the text you type overwrites the existing
text.

Note The Macintosh platform does not support overwrite mode.

Determining the Current Typing Mode
The Editor indicates the current mode as follows:

• In insert mode, the cursor is a vertical bar and the text OVR appears
dimmed in the status bar.

• In overwrite mode, the cursor is a wide block and the text OVR is not
dimmed in the status bar.

Toggling Between Insert and Overwrite Mode
To toggle between insert and overwrite mode:

1 In the Editor, place the cursor where you want to enter text.

2 Press the Insert key to toggle the typing mode from insert to overwrite
mode, or the reverse.

The Insert key is the default keyboard shortcut for changing the typing mode.
For details, on changing keyboard shortcuts, see “Customizing Keyboard
Shortcuts” on page 2-79.

Changing the Case of Selected Text
To change the case of text in the Editor, select the text. Then, from the Text
menu, select one of the following:

• Change to Upper Case to change all text to uppercase

9-39



9 Editing and Debugging MATLAB® Code

• Change to Lower Case to change all text to lowercase

• Reverse Case to change the case of each letter

This is useful, for example, when copying syntax from command-line help
for a function. In command-line help, function and variable names are
distinguished from the rest of the text by using uppercase. However, such
code will not run in the MATLAB Editor or Command Window. In this
example, the text is copied and pasted from the output of help get.

V = GET(H, 'Default')

Select all of the text. Select Text > Change to Lower Case. The text
becomes

v = get(h, 'default')

If instead you select Reverse Case for

V = GET(H, 'Default')

the case changes to

v = get(h, 'dEFAULT')

Undoing and Redoing Editor Actions
You can undo many of the Editor actions listed in Edit and Text menus.
Select Edit > Undo. You can undo multiple times in succession until there
are no remaining actions to undo. Select Edit > Redo to reverse an undo.

Adding Comments
Comments in MATLAB code are strings or statements that do not execute.
Add comments in a file to describe the code or how to use it. Comments
determine what text displays when you run help for a file name. Use
comments when testing your files or looking for errors—temporarily turn
lines of code into comments to see how the file runs without those lines. These
topics provide details:

• “Commenting in MATLAB Code Using the MATLAB Editor” on page 9-41

9-40



Entering Statements in the Editor

• “Commenting in Java and C/C++ Files Using the MATLAB Editor” on
page 9-42

• “Commenting in MATLAB Code Using Any Text Editor” on page 9-42

• “Commenting Out Part of a Statement” on page 9-44

• “Wrapping Comments in MATLAB Code” on page 9-45

Commenting in MATLAB Code Using the MATLAB Editor
You can comment the current line or a selection of lines in MATLAB code.

1 For a single line, position the cursor in that line. For multiple lines, click in
the line and then drag or Shift+click to select multiple lines.

2 Select Comment from the Text menu, or right-click and select it from
the context menu.

The Editor adds a comment symbol, % at the start of each selected line.
The color of the commented text becomes green, or the color specified for
comments. See “Syntax Highlighting” on page 9-53.

To uncomment the current line or a selected group of lines, select
Uncomment from the Text menu, or right-click and select it from the
context menu.

9-41



9 Editing and Debugging MATLAB® Code

Click to the left of a line to select it.
Click + drag to select multiple lines.

Commenting in Java and C/C++ Files Using the MATLAB Editor
For Java and C/C++ files, selecting Text > Comment adds the // symbols at
the front of the selected lines. Similarly, Text > Uncomment removes the //
symbols from the front of selected lines in Java and C/C++ files.

Commenting in MATLAB Code Using Any Text Editor
You can make any line in MATLAB code a comment by typing % at the
beginning of the line. To put a comment within a line, type % followed by the
comment text. MATLAB software treats all the information after the % on a
line as a comment. For instance, if the following line appears in a file, then
MATLAB ignores the line when you run the file:

% This is a comment.

9-42



Entering Statements in the Editor

To uncomment any line, delete the comment symbol, %.

To comment a contiguous group of lines, type %{ before the first line and
%} after the last line you want to comment. This is referred to as a block
comment. The lines that contain %{ and %} can contain spaces, but no other
text. After typing the opening block comment symbol, %{, all subsequent
lines assume the syntax highlighting color for comments until you type the
closing block comment symbol, %}. Remove the block comment symbols, %{
and %}, to uncomment the lines.

This example shows some lines of code commented out. When you run the file,
the commented lines do not execute. This is useful when you want to identify
the section of a file that is not working as expected.

Comment a block of code by
adding %{ before the first line
and %} after the last line.

You can easily extend a block comment without losing the original block
comment, that is, create a nested block comment, as shown in the following
example.

Original
comment

Extended
comment

Create a nested comment, that is, a block
comment within a block comment.

9-43



9 Editing and Debugging MATLAB® Code

Commenting Out Part of a Statement
To comment out the end of a statement, put the comment character, %, before
the comment. When you run the file, MATLAB software ignores any text
on the line after the %.

Any text following a % within a line
is considered to be a comment.

To comment out text within a multiline statement, use the ellipsis (...).
MATLAB ignores any text appearing after the ... on a line and continues
processing on the next line. This effectively makes a comment out of anything
on the current line that follows the .... The following example comments
out the Middle Initial line.

MATLAB ignores the text following the ... on the line

Notice that Middle Initial is green, which is the syntax highlighting color
for a comment.

MATLAB continues processing the statement with the next line

MATLAB effectively runs

9-44



Entering Statements in the Editor

Wrapping Comments in MATLAB Code
By default, as you type them in the Editor, comments wrap whenever they
reach a column width of 75. In addition, you can manually wrap comment
lines, such as those that you paste into a file. Use a combination of these
techniques when you open an existing file with comments that exceed the
desired width. Manually wrap existing comments and allow the Editor to
automatically wrap the comments you type into the file.

Wrapping Comments Manually.

1 Place the cursor anywhere within a block of contiguous lines of comments.

2 From the context menu, select File > Wrap Comments.

MATLAB wraps all the comments in the block. To wrap only a subset of
the comments, select the subset before you wrap it.

For information on changing the default comment wrapping behavior, see
“Comment Formatting” on page 9-22.

Exclusions from Comment Wrapping. When you wrap comments, the
Editor does not wrap the following:

• A bulleted list item onto the line that precedes it

A bulleted list item begins with * or # .

• Code cell titles (%% followed by a space)

• Long strings, such as URLs

This behavior preserves the formatting required for Publishing MATLAB
Code Files.

9-45



9 Editing and Debugging MATLAB® Code

Completing Statements in the Editor — Tab
Completion
The Editor helps you automatically complete the names of these items as you
type them in MATLAB program files:

• Functions, including subfunctions and nested functions

• Models

• Class and package names

• Variables, including structures and objects

• Handle Graphics properties

Type the first few characters of the item name, and press the Tab key.
MATLAB also offers tab completion in the Command Window.

The following requirements and limitations apply:

• The tab completion preference for the Editor must be enabled. For details,
see “Setting Keyboard Preferences for Desktop Tools” on page 2-138.

• The Editor searches for functions, models, classes, and package names on
the MATLAB search path and in the current folder.

• The Editor completes the names of subfunctions and nested functions
within the current file. Nested functions appear in the list only when they
are available at the current location of the cursor.

• For variables and figures, the Editor:

- Completes names of all variables and properties of figures in the current
workspace. The current workspace appears in the Stack on the toolbar.

- Completes names of variables defined in the current file. The variable
must be valid at the current location of the cursor (that is, already
defined).

- Does not complete the field names of structure arrays defined only
within the current file.

- Does not complete method or property names for objects defined only
within the current file.

9-46



Entering Statements in the Editor

For more information, see the following examples:

• “Basic Example — Unique Completion” on page 9-47

• “Multiple Possible Completions” on page 9-48

• “Narrowing Completions Shown” on page 9-49

• “Tab Completion for Structures” on page 9-50

• “Tab Completion for Properties” on page 9-51

• “Using Tab for Spacing” on page 9-52

Basic Example — Unique Completion
This example illustrates a basic use for tab completion in the Editor. In a
MATLAB program file open in the Editor, type the beginning of a function
name, for example,

horz

and press Tab. The Editor automatically completes the name, which for this
example displays the function name

horzcat

Complete the statement, adding any arguments, operators, or options. If the
Editor does not complete the name horzcat but instead moves the cursor to
the right, you do not have the preference set for tab completion.

You can use tab completion anywhere in the line, not just at the beginning.
For example, if you type

a = horz

and press Tab, the Editor completes horzcat.

The Editor also completes the names of variables. For example, if you created
a variable costs_march, type cost and press Tab. The Editor completes the
variable name costs_march. If the Editor displays No Completions Found,
costs_march is not available at the current location of the cursor within
the file.

9-47



9 Editing and Debugging MATLAB® Code

Multiple Possible Completions
If there is more than one name that starts with the characters you typed,
when you press the Tab key, the Editor displays a list of all names that start
with those characters. For example, assume that you had created the variable
costs_march in the base workspace. In a MATLAB program file open in
the Editor, type

cos

and press Tab. The Editor opens.

The resulting list of possible completions includes the variable name you
created, costs_march, but also includes functions and models that begin with
cos, including cosets from Communications Toolbox, if it is installed and on
the MATLAB search path.

Continue typing to make your entry unique. For example, type the next
character, such as t in the example. The Editor selects the first item in the
list that matches what you typed, in this case, costs_march. Press Enter (or
Return) or Tab to select that item, which completes the name in the file. In
the example, the Editor displays costs_march at the prompt.

9-48



Entering Statements in the Editor

You can navigate the list of possible completions using up and down arrow
keys, and Page Up and Page Down keys. You can clear the list without
selecting anything by pressing Esc. The list of possible completions might
include items that are not valid commands, such as private functions.

Narrowing Completions Shown
You can narrow the list of completions shown by typing a character and then
pressing Tab if the Keyboard preference Tab key narrows completions is
selected. This is particularly useful for large lists. For example, type cam and
press Tab to see the possible completions. There is a scroll bar with the list
because there are too many completions to be seen at once.

Type p and press Tab again. The Editor narrows the list, showing only all
possible camp completions.

9-49



9 Editing and Debugging MATLAB® Code

Continue narrowing the list in the same way. For the preceding example, type
o and press Tab to narrow the list further. Press Enter or Return to select
an item, which completes the name at the prompt.

Tab Completion for Structures
For structures that are in the current workspace, after the period separator,
press Tab. For example, type

mystruct.

and press Tab to display all fields of mystruct. If you type a structure and
include the start of a unique field after the period, pressing Tab completes
that structure and field entry.

For example, type

mystruct.n

and press Tab, which completes the entry mystruct.name, where mystruct is
in the current workspace and contains no other fields that begin with n.

9-50



Entering Statements in the Editor

Tab Completion for Properties
Complete property names for figures in the current workspace using tab
completion, as in this graphics example. Here, f is a figure. Type

set(f, 'pap

and press Tab. The Editor displays

Select a property from the list. For example, type

u

and press Enter. The Editor completes the property, including the closing
quote.

set(f, 'paperunits'

Continue adding to the statement, as in this example,

set(f, 'paperunits', 'c

and press Tab. The Editor automatically completes the property

set(f, 'paperUnits', 'centimeters'

because centimeters is the only possible completion.

9-51



9 Editing and Debugging MATLAB® Code

Using Tab for Spacing
If the preference for tab completion is selected, and you want to use the Tab
key to add spacing within your statements also, add a space before pressing
Tab. For example, to create this statement

if a=mate %test input value

add a space after mate and then press Tab. If you do not include the space,
the following happens instead:

if a=material

This is because the tab completion feature automatically causes mate to
complete as the material function.

Alternatively, turn off the tab completion preference to use Tab for spacing
in the Editor.

9-52



Making MATLAB® Code Files More Readable

Making MATLAB Code Files More Readable

In this section...

“Syntax Highlighting” on page 9-53

“Indenting” on page 9-53

“Function Indenting” on page 9-55

“Line and Column Numbers” on page 9-55

“Highlight Current Line” on page 9-55

“Right-Side Text Limit” on page 9-56

“Class, Function, or Subfunction” on page 9-57

“Code Folding — Expanding and Collapsing File Constructs” on page 9-57

“Displaying Two Parts of a File Simultaneously” on page 9-67

Note You can specify the default behaviors for some of these features—see
“Specifying Options for MATLAB Using Preferences” on page 2-124.

Syntax Highlighting
Some entries appear in different colors to help you better find matching
elements, such as if/else statements. Similarly, unterminated strings have
a different color than terminated strings. This is called syntax highlighting
and is used in the Command Window, Command History, and the Editor. For
more information, see the Command Window documentation for “Highlighting
Syntax to Help Ensure Correct Entries” on page 3-23.

When you paste or drag a selection from the Editor to another application,
such as Microsoft Word, the pasted text maintains the syntax highlighting
colors and font characteristics from the Editor. MATLAB software pastes the
selection to the Clipboard in RTF format, which many Microsoft Windows
and Macintosh applications support.

Indenting
This section describes how to apply indenting to code in the Editor.

9-53



9 Editing and Debugging MATLAB® Code

Enabling Automatic Indenting
Set an indenting preference so that program control entries indent
automatically to make reading statements such as while loops easier:

1 Select File > Preferences > Editor/Debugger > Language.

2 From the Language drop-down menu, select a language.

3 Under Indenting, select Apply smart indenting while typing.

4 Click OK.

If you want to indent manually, clear Apply smart indenting while typing
in step 3. For more information about indenting preferences, click Help in
the Preferences dialog box. Specify the indenting size and other options by
selecting File > Preferences > Editor/Debugger > Tab.

Manually Applying Indenting
Indenting can help you to read the code sequence. Manually apply smart
indenting, so that lines indent if they start with a keyword function or if they
follow lines containing certain keyword functions:

1 Select the lines to indent.

2 Select Text > Smart Indent or right-click and select Smart Indent from
the context menu.

3 Adjust the text by doing one of the following:

• Move the current or selected lines further to the left, by selecting
Text > Decrease Indent.

• Move the current or selected lines further to the right, by selecting
Text > Increase Indent.

Additional methods for indenting a line are:

• Press the Tab key at the start of a line.

• Select a line or group or lines and press the Tab key.

9-54



Making MATLAB® Code Files More Readable

Press Shift+Tab to decrease the indent for the selected lines. This
works differently if you select the Editor/Debugger Tab preference for
Emacs-style Tab key smart indenting—when you position the cursor in
any line or select a group of lines and press Tab, the lines indent according
to smart indenting practices.

For more information about manual indenting, select
File > Preferences > Editor/Debugger > Tab, and then click
Help.

Function Indenting
You can select from three indenting options when you enter a subfunction or a
nested function (a function within a function) in the Editor. For details, see
“Function Indenting Format” on page 9-25.

Line and Column Numbers
Line numbers display along the left side of the Editor window. You can
elect not to show the line numbers using preferences. For details, select
File > Preferences > Editor/Debugger > Display, and then click Help.

The line and column numbers for the current cursor position display in the far
right side of the status bar in the Editor.

Highlight Current Line
You can set a preference to highlight the current line, that is the line with
the caret (also called the cursor). This helps you see where copied text will be
inserted when you paste, for example.

To highlight the current line:

1 Select File > Preferences > Editor/Debugger > Display.

2 Under General display options, select Highlight current line.

3 If you want a highlight color other than green, click the color palette and
choose a different color.

9-55



9 Editing and Debugging MATLAB® Code

In the following image, the current line is highlighted in the default
highlighting color—green.

Right-Side Text Limit
By default, a light gray vertical line (rule) appears at column 75 in the
Editor, indicating where a line becomes wider than desired. This is useful,
for example, if you want to keep each line below a limit imposed by another
text editor in which you intend to view the code. You can change the width
and color of the vertical line, as well as the column number at which the
vertical line appears. If you want, you can hide the vertical line. For more
information, select File > Preferences > Editor/Debugger > Display, and
then click Help.

9-56



Making MATLAB® Code Files More Readable

Note This limit is a visual cue only and does not prevent text from exceeding
the limit. For information on setting a value to wrap comment text at a
specified column number automatically, see “Comment Formatting” on page
9-22.

Class, Function, or Subfunction
The right side of the Editor status bar shows the class, function, or
subfunction where the cursor is currently placed, depending on the type of
file you are viewing:

• Class file — The name of the class followed by the name of the current
function (if any) that the cursor is within. This is true regardless of the
type of function in which the cursor is placed (nested, in a methods block,
outside a classdef file, and so on).

• Function file — The name of the main function followed by the name of the
current function the cursor is within (if any). This is true regardless of the
type of function in which the cursor is placed (subfunction or nested).

Code Folding — Expanding and Collapsing File
Constructs
Code folding is the ability to expand and collapse certain MATLAB
programming constructs. This improves readability when a file contains
numerous subfunctions or other blocks of code that you want to hide when
you are not currently working with that part of the file.

You can set preferences to enable or disable the ability to expand and collapse
the following MATLAB programming constructs:

• Help block comments

• Cells used for running sections of code and publishing code

• Class code

• Class enumeration blocks

• Class event blocks

• Class method blocks

9-57



9 Editing and Debugging MATLAB® Code

• Class properties blocks

• For and parfor blocks

• Function and class help

• Function code

• If/else blocks

• Single program, multiple data (spmd) blocks

• Switch/case blocks

• Try/catch blocks

• While blocks

By default, code folding is enabled for all programming
constructs except if/else blocks and switch/case blocks. Select
File > Preferences > Editor/Debugger > Code Folding, and then click
Help for details on setting preferences.

When you fold a construct, all the code associated with that construct is
collapsed such that the Editor displays only the first line of the construct

prepended by the plus sign ( ) and appended with an ellipsis ( ) to indicate
there is more code. When you expand a construct, all the code associated
with that construct appears and the first line of the construct is prepended
with a minus sign ( ).

To open the code used in the images in this section, enter the following in
the Command Window:

open(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','collatzall.m'))

The following image shows the collatzall and collatzplot_new functions
collapsed and the collatz function code expanded.

9-58



Making MATLAB® Code Files More Readable

When you expand a function or class, but collapse its associated help block
code, the Editor displays all the function or class code and just the first line of
the help code. The first line of the help code ends with a commented ellipsis

9-59



9 Editing and Debugging MATLAB® Code

to indicate there is additional help code, as shown in the following
image.

To expand code for a construct that is currently collapsed, do one of the
following:

• Click the plus sign to the left of the construct that you want to expand.

• Place your cursor in the code that you want to expand, right-click, and then
select Code Folding > Expand from the context menu.

To collapse code for a construct that is currently expanded, do one of the
following:

• Click the minus sign to the left of the construct that you want to collapse.

9-60



Making MATLAB® Code Files More Readable

• Place your cursor in the code that you want to collapse, right-click, and
then select Code Folding > Collapse from the context menu.

To expand or collapse all of the code in a file, place your cursor anywhere
within the file, right-click, and then select Code Folding > Expand All or
Code Folding > Collapse All from the context menu.

For information on the structure of a MATLAB code file, including a
description of a function definition line and an H1 line, see Basic Parts of a
Program File in the Programming Fundamentals documentation.

Viewing Folded Code in a Tooltip
You can view code that is currently folded by positioning the pointer over its

ellipsis . The code appears in a tooltip. This lets you quickly view the code
without unfolding it.

The following image shows the tooltip that appears when you place the
pointer over the ellipsis on line 6 of collatzall.m when the collatzplot_new
function is folded.

9-61



9 Editing and Debugging MATLAB® Code

Code Folding Behavior and Preferences

• “Changing Code Folding Preferences” on page 9-63

• “Default Code Folding Behavior for Files Created Before MATLAB Version
7.5” on page 9-63

• “Reopening a File After Collapsing Code Folds” on page 9-63

• “Copying and Pasting Folded Code” on page 9-63

• “Printing Files with Collapsed Code” on page 9-63

• “Behavior When Functions Have No Explicit End Statement” on page 9-63

• “Effect of Syntax Errors on Code Folding” on page 9-66

9-62



Making MATLAB® Code Files More Readable

Changing Code Folding Preferences. To change the current code folding
settings, select File > Preferences > Editor/Debugger > Code Folding.
If needed, click Help for assistance.

Default Code Folding Behavior for Files Created Before MATLAB
Version 7.5. By default, the first time you open a MATLAB code file that
existed before MATLAB Version 7.5 (R2007b) using MATLAB Version 7.5
(R2007b) or later, code folding is enabled and all constructs are expanded.

Reopening a File After Collapsing Code Folds. Constructs that are
collapsed when you close a file remain collapsed when you reopen the file.

Copying and Pasting Folded Code. If you copy a collapsed construct from
one region of a file and paste it in another region, the construct is expanded
in the pasted location.

Printing Files with Collapsed Code. If you print a file with one or more
collapsed constructs, those constructs are expanded in the printed version of
the file.

Behavior When Functions Have No Explicit End Statement. If you
enable code folding for functions and a function in your code does not end with
an explicit end statement, you see the following behavior:

• If a line containing only comments appears at the end of such a function,
then the Editor does not include that line when folding the function.
MATLAB does not include trailing white space and comments in a function
definition that has no explicit end statement.

Code Folding Enabled for Function Code Only on page 9-64 illustrates this
behavior. Line 13 is excluded from the fold for the foo function.

• If a fold for a cell overlaps the function code, then the Editor does not show
the fold for the overlapping cell.

The three figures that follow illustrate this behavior. The first two figures,
Code Folding Enabled for Function Code Only on page 9-64 and Code
Folding Enabled for Cells Only on page 9-65 illustrate how the code folding
appears when you enable it for function code only and then cell code only,
respectively. The last figure, Code Folding Enabled for Both Functions and
Cells on page 9-66, illustrates the effects when code folding is enabled for

9-63



9 Editing and Debugging MATLAB® Code

both. Because the fold for cell 3 (lines 11–13) overlaps the fold for function
foo (lines 4–12), the Editor does not display the fold for cell 3.

Code Folding Enabled for Function Code Only

9-64



Making MATLAB® Code Files More Readable

Code Folding Enabled for Cells Only

9-65



9 Editing and Debugging MATLAB® Code

Code Folding Enabled for Both Functions and Cells

Effect of Syntax Errors on Code Folding. If your code contains syntax
errors, the code folding indicators might appear to be in the wrong location.
For example, suppose your code currently appears as shown in the first figure
that follows. If you delete the while statement, it introduces a syntax error
at line 3, as shown in the second figure that follows. Notice that the minus
sign remains in the same location it held for the syntactically correct code.
After you correct the syntax error, the Editor adjusts and displays the code
folding indicators appropriately.

9-66



Making MATLAB® Code Files More Readable

Displaying Two Parts of a File Simultaneously
You can simultaneously display two different parts of a file in the Editor by
splitting the screen display, as shown in the image that follows. This feature
makes it easy to compare different lines in a file or to copy and paste from
one part of a file to another.

See also “Positioning Documents” on page 2-24 for instructions on displaying
multiple documents simultaneously.

9-67



9 Editing and Debugging MATLAB® Code

)�
�����

Splitting the Screen Display
The following table describes the various ways you can split the Editor and
manipulate the split-screen views. When you open a document, it opens
unsplit, regardless of its split status it had when you closed it.

Operation Instructions

Split the screen
horizontally.

Do either of the following

• SelectWindow > Split Screen > Top/Bottom.

• If there is a vertical scroll bar, as shown in the
illustration that follows, drag the splitter bar
down.

9-68



Making MATLAB® Code Files More Readable

Operation Instructions

Split the screen
vertically.

Do either of the following:

• SelectWindow > Split Screen > Left/Right.

• If there is a horizontal scroll bar, as shown in
the illustration that follows, drag the splitter bar
from the left of the scroll bar.

Specify the active
view.

Do either of the following:

• Select Window > Split Screen > Switch
Focus.

• Click in the view you want to make active.

Updates you make to the document in the active
view are also visible in the other view.

Resize the views. Drag the splitter.

Remove the splitter Do one of the following:

• Drag the splitter to an edge of the window.

• Double-click the splitter.

• Select Window > Split > Screen > Off.

9-69



9 Editing and Debugging MATLAB® Code

 ��������

��
����������

5����%�

��
�����
����

9-70



Navigating an Open File in the Editor

Navigating an Open File in the Editor

In this section...

“Navigating to a Specific Location” on page 9-71

“Using Bookmarks” on page 9-75

“Navigating Backward and Forward in Files” on page 9-75

“Opening a File or Variable from Within a File” on page 9-76

Note See also “Finding Text in Files” on page 9-78.

Navigating to a Specific Location
This table summarizes the steps for navigating to a specific location within
a file open in the Editor. In some cases, different sets of steps are available
for navigating to a particular location. Choose the set that works best with
your workflow.

Go To Steps Notes

Line Number
1 Select Go > Go To

2 Specify the line to which you want
to navigate.

None

1 Click the Show Functions button
on the Editor toolbar.

2 From the list that appears, select
the subfunction or nested function
to which you want to navigate.

Includes subfunctions and nested
functions

Includes subfunctions and nested
functions

For both class and function files,
the functions list in alphabetical
order—except that in function files,
the name of the main function
always appears at the top of the list.

Function
definition

9-71



9 Editing and Debugging MATLAB® Code

Go To Steps Notes

1 Select Go > Go To

2 Select the subfunction or nested
function to which you want to
navigate.

Includes subfunctions and nested
functions

Functions list in alphabetical order.
To order them by their position in the
file, click the Line column heading.

The list shows lines in the current
file that begin with a function
statement. The list does not include
functions that the file calls.

1 In the Current Folder browser,
click the name of the file open in
the Editor.

2 Click the up arrow at the
bottom of Current Folder browser
to open the detail panel.

3 In the detail panel, double-click
the function icon corresponding
to the title of the function or
subfunction to which you want to
navigate.

Functions list in order of appearance
within your file.

9-72



Navigating an Open File in the Editor

Go To Steps Notes

Function
reference 1 Click in any instance of the

function name.

2 Press Alt +Up or Alt+Down to go
to the next or previous function
reference, respectively.

Variable
reference 1 Click in any instance of the

variable name.

2 Press Alt +Up or Alt+Down to
go to the next or previous variable
reference, respectively.

Code Analyzer
Message

Press Alt +Up or Alt+Down to go to
the next or previous code analyzer
message, respectively.

Alt +Up and Alt+Down are
the default keyboard shortcuts
for the actions Go to Previous
Underline or Highlight and Go
to Next Underline or Highlight,
respectively.

For more information, see
“Performing Desktop Actions
Using Keyboard Shortcuts” on page
2-69.

1 Click the Show Cell Titles
button on the Editor Cell Mode
toolbar.

2 From the list that appears, select
the title of the code cell to which
you want to navigate.

1 Select Go > Go To

2 Select the title of the code cell to
which you want to navigate.

Code Cell

1 In the Current Folder browser,
click the name of the file that is
open in the Editor.

For more information, see “Defining
Code Cells” on page 9-178

9-73



9 Editing and Debugging MATLAB® Code

Go To Steps Notes

2 Click the up arrow at the
bottom of Current Folder browser
to open the detail panel.

3 In the detail panel, double-click
the cell icon corresponding to
the title of the cell to which you
want to navigate.

Property
1 In the Current Folder browser,
click the name of the file that is
open in the Editor.

2 Click the up arrow at the
bottom of Current Folder browser
to open the detail panel.

3 On the detail panel, double-click
the property icon corresponding
to the name of the property to
which you want to navigate.

For more information, see
“Properties — Storing Class
Data”

Method
1 In the Current Folder browser,
click the name of the file that is
open in the Editor.

2 Click the up arrow at the
bottom of Current Folder browser
to open the detail panel.

3 In the detail panel, double-click
the icon corresponding to the
name of the method to which you
want to navigate.

For more information, see “Methods
— Defining Class Operations”

Bookmark Select Go > Next Bookmark, or
Go > Previous Bookmark.

For information on setting and
clearing bookmarks, see “Using
Bookmarks” on page 9-75.

9-74



Navigating an Open File in the Editor

Using Bookmarks
You can set a bookmark at any line in a file in the Editor so you can quickly
navigate to the bookmarked line. This is particularly useful in long files. For
example, suppose while working on a line, you want to look at another part of
the file, and then return. Set a bookmark at the current line, go to the other
part of the file, and then use the bookmark to return.

To set a bookmark:

1 Position the cursor anywhere on the line.

2 Select Go > Set/Clear Bookmark.

A bookmark icon appears to the left of the line.

To clear a bookmark, position the cursor anywhere on the line and select
Go > Select/Clear Bookmark.

MATLAB does not maintain bookmarks after you close a file.

Navigating Backward and Forward in Files
To access lines in a file in the same sequence that you previously navigated or
edited them, do one of the following:

• Select Go > Back or click .

• Select Go > Forward or click .

Interrupting the Sequence of Go Back and Go Forward
The Go > Back or Go > Forward feature sequence is interrupted if you:

1 Select Go > Back.

2 Select Go > Forward.

3 Edit a line or navigate to another line using the list of features described in
“Navigating to a Specific Location” on page 9-71.

9-75



9 Editing and Debugging MATLAB® Code

You can still go to the lines preceding the interruption point in the sequence,
but you cannot go to any lines after that point. Any lines you edit or navigate
to after interrupting the sequence are added to the sequence after the
interruption point.

For example:

1 Open a file.

2 Edit line 2, line 4, and line 6.

3 Use Go > Back to return to line 4, and then to return to line 2.

4 Use Go > Forward to return to lines 4 and 6.

5 Use Go > Back to return to line 1.

6 Edit at 3.

This interrupts the sequence. You can no longer use Go > Forward to
return to lines 4 and 6. You can, however, use Go > Back to return to
line 1.

Opening a File or Variable from Within a File
You can open a subfunction, function, file, variable, or Simulink model
from within a file in the Editor. Position the cursor on the name, and then
right-click and select Open selection from the context menu. Based on what
the item is, the Editor performs a different action, as described in this table.

Item Action

Subfunction Navigates to the subfunction within the current file,
if that file is a MATLAB code file. If no subfunction
by that name exists in the current file, the Editor
runs the open function on the selection, which opens
the selection in the appropriate tool.

Text file Opens in the Editor.

Figure file (.fig) Opens in a figure window.

9-76



Navigating an Open File in the Editor

Item Action

MATLAB variable
that is in the current
workspace

Opens in the Variable Editor.

Model Opens in Simulink.

Other If the selection is some other type, Open selection
looks for a matching file in a private folder in the
current folder and performs the appropriate action.

9-77



9 Editing and Debugging MATLAB® Code

Finding Text in Files

In this section...

“Finding Any Text in the Current File” on page 9-78

“Finding and Replacing Functions or Variables in the Current File” on
page 9-78

“Finding and Replacing Any Text” on page 9-80

“Finding Text in Multiple File Names or Files” on page 9-81

“Function Alternative for Finding Text” on page 9-82

“Performing an Incremental Search in the Editor” on page 9-82

Finding Any Text in the Current File

1 Within the current file, select the text you want to find.

2 From the Edit menu, select Find Selection.

The next occurrence of that text is selected.

3 Select Find Selection again (or Find Next) to continue finding more
occurrences of the text.

To find the previous occurrence of selected text (find backwards) in the current
file, select Find Previous from the Edit menu. The previous occurrence of
the text is selected. Repeat to continue finding the previous occurrences of
the text.

Finding and Replacing Functions or Variables in the
Current File
To search for references to a particular function or variable, use the function
and variable highlighting feature. This feature is more efficient than using
the text finding tools. Function and variable highlighting indicates only
references to the function or variable, not other occurrences. For instance it
does not find references to the function or variable in comments. Furthermore,
variable highlighting only includes references to the same variable. That is, if

9-78



Finding Text in Files

two variables use the same name, but are in different scopes, highlighting one
does not cause the other to highlight.

1 Select File > Preferences > Colors > Programming Tools.

2 Under Variable and function highlighting colors, select
Automatically highlight and Nonlocal variables, and then click Apply.

3 In a file open in the Editor, click an instance of the variable you want to
find throughout the file.

MATLAB indicates all occurrences of that variable within the file by:

• Highlighting them in teal blue (by default) throughout the file.

• Adding a marker for each in the indicator bar

If a code analyzer indicator and a variable indicator appear on the same
line in a file, the marker for the variable takes precedence.

• Specifying the number of usages it finds in the status bar

4 Hover over a grey maker in the indicator bar to see the line it represents.

5 Click a grey marker in the indicator bar to navigate to that occurrence
of the variable.

Replace an instance of a function or variable by editing the occurrence at a
line to which you have navigated.

The following image shows an example of how the Editor looks with variable
highlighting enabled. In this image, the variable i appears highlighted in sky
blue, the indicator bar contains three variable markers, and the status bar
(on the lower left edge of the tool) indicates 5 usages of i found.

9-79



9 Editing and Debugging MATLAB® Code

Finding and Replacing Any Text
To search for, and optionally replace specified text within a file:

1 Select Edit > Find and Replace.

The Find and Replace dialog box opens.

9-80



Finding Text in Files

2 Complete the resulting Find & Replace dialog box:

• Type the text you want to find in the Find what field.

• Optionally, type the text that you want to use instead of the found text
in the Replace with field.

• Optionally, search for the specified text in other MATLAB desktop tools
by changing the selection in the Look in field.

3 Click Find Next, Find Previous, Replace, or Replace All.

4 SelectWrap around to have MATLAB continue the search after reaching
the beginning or end of the file.

When a search for Find Next reaches the end of the file, or when a
search for Find Previous reaches the beginning of the file, the MATLAB
software beeps.

Use keyboard shortcuts to continue finding the specified text even after
closing the Find & Replace dialog box. You can go to another file and find
the specified text in it. For details on keyboard shortcuts, see “Displaying
Keyboard Shortcuts” on page 2-75.

Finding Text in Multiple File Names or Files
To find folders and file names that include specified text, or whose contents
contain specified text, select Edit > Find Files. For details, see “Finding
Files and Folders” on page 7-27.

9-81



9 Editing and Debugging MATLAB® Code

Function Alternative for Finding Text
Use lookfor to search for the specified text in the first line of help for all files
with the .m extension on the search path.

Performing an Incremental Search in the Editor
With the incremental search feature, the cursor moves to the next or previous
occurrence of the specified text in the current file. It is similar to the Emacs
search feature. In the Editor, incremental search uses the same controls
as incremental search in the Command Window. For details, see “Using
Incremental Search in the Command Window” on page 3-53.

9-82



Saving, Printing, and Closing Files in the Editor

Saving, Printing, and Closing Files in the Editor

In this section...

“Saving Files” on page 9-83

“Printing Files” on page 9-85

“Closing Files” on page 9-86

Saving Files

After you modify a file, an asterisk (*) follows the file name in the title bar of
the Editor. This asterisk indicates that there are unsaved changes to the file.

You can perform four different types of save operations, which have various
effects, as described in this table.

Save Option Steps

Save file to disk

File stays open in the Editor.

Select File > Save.

Rename file and make active

Renames the file, saves it to
disk, and makes it the active
Editor document. The original file
remains unchanged on disk.

1 Select File > Save As.

2 Specify a new name, type, or both
for the file, and then click Save.

Save backup copy

Saves file to disk under new name.
Original file remains open and
unsaved.

1 Select File > Save Backup.

MATLAB opens the Select File for
Backup dialog box.

2 Specify a name and type for the
backup file, and then click Save.

9-83



9 Editing and Debugging MATLAB® Code

Save Option Steps

Save changes to open files

Saves changes to all open files
using current file names. Prompts
you to name unnamed files, and
then saves them.

All of the files remain open.

1 Select File > Save All.

MATLAB opens the Select File for
Save As dialog box for the first
unnamed file.

2 Specify a name and type for the
unnamed file, and then click Save.

3 Repeat step 2 until all unnamed files
are saved.

Recommendations on Saving Files
MathWorks recommends that you save files you create and files from
MathWorks that you edit to a folder that is not in the matlabroot/toolbox
folder tree. If you keep your files in matlabroot/toolbox folders, they can be
overwritten when you install a new version of MATLAB software.

At the beginning of each MATLAB session, MATLAB loads and caches
in memory the locations of files in the matlabroot/toolbox folder tree.
Therefore, if you:

• Save files to matlabroot/toolbox folders using an external editor, run
rehash toolbox before you use the files in the current session.

• Add or remove files from matlabroot/toolbox folders using file system
operations, run rehash toolbox before you use the files in the current
session.

• Modify existing files in matlabroot/toolbox folders using an external
editor, run clear function-name before you use these files in the current
session.

For more information, see rehash or “Toolbox Path Caching in the MATLAB
Program” on page 1-19.

9-84



Saving, Printing, and Closing Files in the Editor

Autosaving Files
When you modify a file in the Editor, the Editor saves a copy of the file using
the same file name but with an .asv extension every 5 minutes. The autosave
version is useful if you have system problems and lose changes you made to
your file. In that event, you can open the autosave version, filename.asv,
and then save it as filename.m to use the last good version of filename. For
example, if you edit filename.m and do not save it for 5 minutes, MATLAB
saves the file including the unsaved changes, to filename.asv.

You can set autosave preferences to:

• Turn the autosave feature off or on.

• Specify the number of minutes between automatic saves.

• Specify the file extension and location for autosave files.

For details, see “Setting Autosave Preferences” on page 9-35.

If you edit a file in a read-only folder and the autosave Location preference
is the source file folder, then the Editor does not create an autosave copy of
the file.

Deleting Autosave Files. By default, autosave files do not delete
automatically when you delete the source file. It is best to keep autosave-to-file
relationships clear and current. Therefore, when you rename or remove a file,
consider deleting or renaming the corresponding autosave file.

There is a preference to Automatically delete autosave files. With
this preference selected, when you close a file in the Editor, MATLAB
automatically deletes the corresponding autosave file.

Printing Files
To print an entire file, select File > Print, or click the Print button on
the toolbar. To print the current selection, select File > Print Selection.
Complete the standard print dialog box that appears.

Specify printing options for the Editor by selecting File > Page Setup. For
example, you can specify printing with a header. For more information, see
“Printing and Page Setup Options for Desktop Tools” on page 2-115.

9-85



9 Editing and Debugging MATLAB® Code

Closing Files
To close the current file, select Close filename from the File menu, or click
the Close box Close button in the Editor menu bar. This is different from
the Close button in the title bar of the Editor, which closes all open files in
that Editor window.

Close all open files in this
Editor window.

Close current 
file.

To close all files within the Editor, select Window > Close Editor
Documents. This menu option does not close any files undocked from the
Editor. The Editor remains open with no files in it.

If each file is open in a separate window, close all the files at once using Close
All Documents in the Window menu. This closes desktop documents of all
types, including Variable Editor documents.

When you close a file that has unsaved changes, you are prompted to save
the file. If you do not want to be prompted, hold Ctrl and click the Close
button. The prompt does not appear and the document closes without saving
any unsaved changes.

9-86



Running MATLAB® Files in the Editor

Running MATLAB Files in the Editor

In this section...

“Running Files with No Input Arguments in the Editor” on page 9-87

“Using Run Configurations to Run Files with Input Arguments in the
Editor” on page 9-88

“Create and Use a Run Configuration” on page 9-88

“Create and Execute Multiple Run Configurations for a File” on page 9-93

“About the run_configurations.m File” on page 9-96

“Find Configurations” on page 9-96

“Remove Configurations” on page 9-98

“Reassociate and Rename Configurations” on page 9-99

“Other Ways to Run Files from the Editor” on page 9-103

Running Files with No Input Arguments in the Editor
To run a MATLAB script or function file that is open in the Editor and
requires no input argument values, do one of the following:

• Click the Run button on the toolbar.

The button’s tooltip includes the name of the file that will run, which is
useful when you have multiple files open. If the file has unsaved changes,
the Editor automatically saves the changes before running it.

• Select Debug > Run filename.

If the file is not in the current folder or a folder on the search path, then a
dialog box appears with options that enable you to run the file. You can
either change the current folder to the folder containing the file, or you can
add the folder containing the file to the search path.

• Select Debug > Save File and Run filename.

If the file is a script, you can view the value of a variable in the file, using a
data tip, which is like a tooltip for data. For details, see “Viewing Values as
Data Tips in the Editor” on page 9-153.

9-87



9 Editing and Debugging MATLAB® Code

Using Run Configurations to Run Files with Input
Arguments in the Editor
You can provide values for MATLAB function input arguments by using
a run configuration. Then, run that configuration to use the assigned
values. When you are editing a function file, use a run configuration as an
alternative to running the function in the MATLAB Command Window.
You can associate multiple run configurations with a function file to assign
different input values. MATLAB saves the run configurations between
sessions to a file named run_configurations.m. (For details, see “About the
run_configurations.m File” on page 9-96.)

Consider the function collatzplot_new.m, which computes and plots the
Collatz sequence for any given positive integer. This function requires
you to specify the integer as an input value. You cannot simply run
collatplot_new.m in the Editor because the input value is not defined.
One way to specify the input value is to run the MATLAB function
file in the Command Window. Run configurations allow you to run
collatzplot_new(specific value) in the Editor.

You can also use run configurations to provide preparatory or setup
information before running a MATLAB file, whether it takes input arguments
or not.

Note Run configurations use the base MATLAB workspace. Therefore, a
value that you assign to a variable in a run configuration overwrites the value
for that variable (assuming that it currently exists) in the base workspace.

Create and Use a Run Configuration
Follow these steps to create and use a run configuration for a file in the
Editor. These steps specify Editor toolbar buttons, but you can also use
equivalent options in the Debug menu.

1 Open the file you want to run in the Editor. For example, open
collatzplot_new.m by running the following command:

edit(fullfile(matlabroot,'help','techdoc',...
'matlab_env','examples','collatzplot_new.m'))

9-88



Running MATLAB® Files in the Editor

To work with collatzplot_new.m on your system, save the file to a folder
for which you have write permission. In the example, the file is saved to
I:\my_matlab_files\my_mfiles\collatzplot_new.m.

2 Click the down arrow on the Run button in the Editor toolbar,

and then select Edit Run Configurations for filename, where filename
in this example is collatzplot_new.m.

The Edit Configurations dialog box opens with a default run configuration
template for collatzplot_new.m.

9-89



9 Editing and Debugging MATLAB® Code

3 In the MATLAB expression area of the dialog box, enter MATLAB
statements that you want to run. Delete the existing comments or replace
them with comments relevant to your run configuration. To undo and redo,
use the keyboard shortcuts for your platform, such as Ctrl+Z and Ctrl+Y
for Microsoft Windows platforms.

In this example, set m equal to 3, which is a small value useful for debugging
purposes. Complete the statement to run collatzplot_new(m).

9-90



Running MATLAB® Files in the Editor

The MATLAB expression area provides syntax highlighting and shows
M-Lint messages, like the Editor.

4 To ensure that your run configuration executes as expected, click Run to
execute the statements in theMATLAB expression field. In this example,
collatzplot_new(3) runs, and a Figure window displays the plot.

5 You can modify the statements in the MATLAB expression area of the
dialog box and click Run to see the results of the changes. You can also
modify the code file and save the changes while the Edit Configurations
dialog box is open. Click Run to see the results of the changes you made to
the file.

6 You can assign a name using the Run configuration name field in the
Edit Configurations dialog box. By default, the run configuration name is
the file name. If you expect to create multiple run configurations for a

9-91



9 Editing and Debugging MATLAB® Code

file, assign each a name that helps you identify the configuration. In this
example, name the run configuration collatzplot_new_test.

MATLAB automatically saves the run configuration and its association
with the file in the run_configurations.m file in your preferences folder.

For more information, see “About the run_configurations.m File” on page
9-96.

7 To close the Edit Configurations dialog box, click Close.

8 After creating a run configuration, you can view and use the configuration
without opening the Edit Configurations dialog box.

In the Editor toolbar, click the down arrow on the Run button and
position the mouse pointer on a run configuration name. The MATLAB
desktop displays a tooltip showing the MATLAB Expression associated
with the run configuration, so you can see what will run.

9 To use the run configuration, select the run configuration name. MATLAB
runs the expression you specified in the run configuration. For example,

9-92



Running MATLAB® Files in the Editor

select collatzplot_new_test, and MATLAB run collatzplot_new(3), as
specified in step 3. You can modify the file, save it, and then execute the
run configuration from the toolbar to see the effects of the modifications.

Create and Execute Multiple Run Configurations for
a File
You can create multiple run configurations for a given file, allowing you to
run with different values for input arguments, each for a different purpose.
Create a named run configuration for each purpose, all associated with the
same file. Then any time you open that file, choose and execute the run
configuration you want. For example, for collatzplot_new(m) you might use
three values for m and have three run configurations:

• Small value, for example, 3, for debugging and testing

• Realistic value, for example, 200 or more, for a specific project

• Random value to observe changes

1 Open the Edit Configurations dialog box, and then do the following:

a Select the file to which you want to add a run configuration, or select a
configuration already associated with that file.

b Click the Add button (under the list of configurations), and then
click Run Configuration.

MATLAB creates a new default run configuration template, in this
example, collatzplot_new_2.

The example shows collatzplot_new_2 and its default expression,
as well as one previously created run configuration associated with
collatzplot_new.m, collatzplot_new.

9-93



9 Editing and Debugging MATLAB® Code

2 In the Edit Configurations dialog box, modify, run, and name the new run
configurations as you did for the initial run configuration, collatplot_new,
as described in “Create and Use a Run Configuration” on page 9-88.

For example, rename collatzplot_new_2 to
collatzplot_new_largevalue, and replace the default template
expression with:

% Large value
m=200;
collatzplot_new(m)

To create another run configuration, click the down arrow next to the
Add button again, and then click Run Configuration. Rename
collatzplot_new_2 to collatzplot_new_random and replace the default
template expression with:

% Random value
m=int16(rand*50);
collatzplot_new(m)

9-94



Running MATLAB® Files in the Editor

clear all

3 Select a run configuration in the listing to see and modify its expression,
or to rename the configuration. Click the expanders next to a file name
(plus + and minus - signs on Windows platforms) to see or hide all the
configurations associated with that file.

4 To get a quick view of the expression in a configuration, position the mouse
pointer on the name of a configuration without selecting it. In this example,
collatzplot_new_largevalue is selected and you can edit its expression
or name. The pointer is positioned on collatzplot_new_2 and you can see
the statements in it.

5 To close the Edit Configurations dialog box, click Close. MATLAB
saves the configurations and their associations with the file in
run_configurations.m in your preferences folder.

For more information, see “About the run_configurations.m File” on page
9-96.

9-95



9 Editing and Debugging MATLAB® Code

About the run_configurations.m File
When you create one or more run configurations using the Edit Configurations
dialog box, the Editor creates or updates the run_configurations.m file in
your preferences folder. (MATLAB returns the preferences folder when you
run prefdir.) The run_configurations.m file is a text file that you can view
and use to evaluate MATLAB code files.

Although you can port this file from the preferences folder on one system
to another, there can only be one run_configurations.m file on a system.
Therefore, only do this if you have not already created configurations on the
second system. Also, because this file might contain references to file paths,
ensure that the MATLAB file and paths it specifies exist on the second system.

MathWorks recommends that you do not update this file in the Editor or a
text editor. Changes you make using tools other than the Edit Configurations
dialog box might be overwritten.

Each time you change a run configuration using the Edit Configurations
dialog box, MATLAB updates the run_configurations.m file as well as the
publish_configurations.m file. See “About the publish_configurations.m
File” on page 11-104 for more information about that file.

Find Configurations
Follow these steps to find run or publish configurations. (For information on
publish configurations, see “Specifying Output Preferences for Publishing”
on page 11-64.)

1 Open any MATLAB code file in the Editor. For example, open the MATLAB
function file sin.m.

2 Open the Edit Configurations dialog box. If none exists, MATLAB
automatically creates a default configuration for sin.m.

In the left pane, MATLAB lists all configurations currently defined for
sin.m.

3 Click the Clear search button within the filter field to clear the filter
field.

9-96



Running MATLAB® Files in the Editor

In the left pane, MATLAB lists all files with configurations.

4 Type a term in the filter field to find a file or
configuration by name.

MATLAB displays only those files whose names contain the term, or whose
associated configurations contain the term in their name. As you type,
MATLAB filters out files and configurations that do not contain the term.

For example, type rand. In this example, only one file, collatzplot_new.m,
has a configuration that contains the term rand.

9-97



9 Editing and Debugging MATLAB® Code

5 If you cannot view the entire name of a configuration, drag the separator
bar to the right of the list, making the left pane wider.

6 To see the expression in that configuration, select the configuration, or
position the mouse pointer over the name.

7 As you type additional letters in the filter field, fewer files remain in the
list of results. Use the Backspace key to modify the term. If there are no
files or configurations containing the term, the list is empty.

Remove Configurations
If you no longer need a run or publish configuration because you do not use it
or because you deleted the file with which it is associated, consider deleting
the configuration. (For information on publish configurations, see “Specifying
Output Preferences for Publishing” on page 11-64.)

1 Open any MATLAB code file in the Editor.

9-98



Running MATLAB® Files in the Editor

2 Open the Edit Configurations dialog box.

3 Do one of the following in the pane on the left:

• If you want to remove a single configuration, select that configuration.

• If you want to remove all the run and publish configurations for the
file, select the file.

4 Click the Remove button .

5 To undo the last deletion, click the Undo button . You cannot undo the
last deletion after you close this dialog box.

Reassociate and Rename Configurations
Each run and publish configuration is associated with a specific file. If you
move or rename a file that has configurations, redefine the association. If you
delete a file, consider deleting the associated configurations, or associate
them with a different file. You might also need to modify the statements in
the configurations so they will run.

When MATLAB cannot associate a configuration with a file, the Edit
Configurations dialog box displays the file name in red, displays a
File Not Found message, and enables you to find the file to which
you want to associate the configuration. In this example, MATLAB
cannot find the file collatzplot_new.m, which has three configurations
associated with it. For this example, collatzplot_new.m had been
renamed to collatzplot_fixed.m, so the configurations associated with
collatzplot_new.m need to be reassociated with collatzplot_fixed.m.

9-99



9 Editing and Debugging MATLAB® Code

To reassociate a configuration:

1 In the left pane, select the file. The Associated file field displays the full
path to the file that was associated with the configurations. Click Choose.

2 In the resulting Open dialog box, navigate to and select the file with which
you now want to reassociate the configurations. Click Open.

In this example, you want to reassociate the configurations with
collatzplot_fixed.m; select collatzplot_fixed.m, and then click Open.

In the Edit Configurations dialog box, the Associated file value reflects
the change you made and the File Not Found message no longer appears.

9-100



Running MATLAB® Files in the Editor

3 Consider renaming the configurations to be consistent with the new file
name, or at least to not reflect the former file name. To do so, select a
configuration from the list in the left pane. In the right pane, edit the value
for the configuration name. Depending on the type of configuration that
you are renaming, the field label is either Run configuration name or
Publish configuration name. Repeat this step for all run and publish
configurations associated with the file.

In this example, remove collatzplot_new from the start of each run
configuration name.

9-101



9 Editing and Debugging MATLAB® Code

4 For a file name change, you might need to modify the configuration
statements to run correctly. For this example, modify the
collatzplot_new(m) statement in each configuration to use
collatzplot(m).

9-102



Running MATLAB® Files in the Editor

Other Ways to Run Files from the Editor

• For additional information about running files while debugging, see
“Running a File with Breakpoints” on page 9-148 .

• While debugging, you can execute sections of a file even though there are
changes. See “Running Sections in MATLAB Files That Have Unsaved
Changes” on page 9-165.

• You can execute files one section at a time and quickly modify values
incrementally using the toolbar. For more information, see “Evaluating
Subsections of Files Using Code Cells” on page 9-175.

9-103



9 Editing and Debugging MATLAB® Code

Finding Errors, Debugging, and Correcting MATLAB Files
This section introduces general techniques for finding errors and using the
automatic code analysis to detect possible areas for improvement in MATLAB
code. It then illustrates the MATLAB debugger features in the Editor, as
well as equivalent Command Window debugging functions, using a simple
example.

There are two kinds of errors:

• Syntax errors — For example, misspelling a function name or omitting a
parenthesis.

• Run-time errors — These errors are usually algorithmic in nature. For
example, you might modify the wrong variable or code a calculation
incorrectly. Run-time errors are usually apparent when a file produces
unexpected results. Run-time errors are difficult to track down because
the function’s local workspace is lost when the error forces a return to
the MATLAB base workspace. The process of isolating and fixing these
run-time problems is referred to as debugging.

In addition to finding and fixing problems with your code, you might want to
improve the performance and make other enhancements using MATLAB tools.

Use the following techniques to isolate the causes of errors and improve
your MATLAB code.

Technique or
Tool

Description For More Information

Syntax
highlighting
and delimiter
matching

Syntax highlighting helps you identify
unterminated strings in a file before you run the
file.

Delimiter matching helps you correctly match
pairs of parentheses, brackets, braces, and
keywords.

“Syntax Highlighting” on
page 9-53

“Matching Delimiters
(Parentheses)” on page
3-24

Nonlocal
variable
highlighting

Nonlocal variable highlighting helps you identify
sources of coding errors that are due to errors in
variable reuse across nested functions.

“Determining Scope and
Usage of Functions and
Variables” on page 9-135

9-104



Finding Errors, Debugging, and Correcting MATLAB® Files

Technique or
Tool

Description For More Information

Error messages When you run a file with a syntax error, MATLAB
software will most likely detect it and display
an error message in the Command Window
describing the error and showing its line number
in the file. Click the underlined portion of the
error message, or position the cursor within the
message and then press Ctrl+Enter. (This is
the default keyboard shortcut for the Display
Hyperlinked Error action on Windows.) The
offending file opens in the Editor, scrolled to the
line containing the error.

“Displaying Keyboard
Shortcuts” on page 2-75

Code analysis
and M-Lint
messages

Use code analysis and M-Lint messages to help
you verify the integrity of your MATLAB code
and learn about potential improvements. Access
messages automatically while you work in a file
in the Editor, or run a Code Analyzer Report for
an existing file.

To evaluate the McCabe complexity (also known
as the cyclomatic complexity) of a file, use the
mlint function with the -cyc option.

“Preventing and
Identifying Coding
Problems” on page 9-107
and the reference page for
the mlint function

Editor,
graphical
debugger,
and MATLAB
debugging
functions

The MATLAB Editor, graphical debugger, and
MATLAB debugging functions are useful for
correcting run-time problems. They enable you
to access function workspaces and examine or
change the values they contain. You can set and
clear breakpoints, indicators that temporarily halt
execution in a file. While stopped at a breakpoint,
you can change workspace contexts, view the
function call stack, and execute the lines in a file
one by one.

“Debugging Process and
Features” on page 9-141

9-105



9 Editing and Debugging MATLAB® Code

Technique or
Tool

Description For More Information

Other
debugging
techniques

• Add keyboard statements to the MATLAB code
file—keyboard statements stop file execution
at the point where they appear and enable you
to examine and change the function’s local
workspace. A special K>> prompt indicates this
mode. Resume function execution by typing
return and pressing the Enter key.

• Remove selected semicolons from the
statements in your MATLAB code
file—semicolons disable the display of
output in the file. By removing the semicolons,
you instruct MATLAB to display these results
on your screen as the file executes.

• List dependent functions—use the depfun
function to see the dependent functions.

Reference pages for
keyboard and depfun
function

Cells In the Editor, isolate sections of a MATLAB code
file, called cells, so you can easily modify and run
a single section.

“Evaluating Subsections
of Files Using Code Cells”
on page 9-175

Profiler Use the Profiler to help you improve performance
and detect problems in your MATLAB code files.
Access the Profiler from the Editor by selecting
Tools > Open Profiler.

“Profiling for Improving
Performance” on page
10-27

Reports Reports help you polish and package MATLAB
code files before providing them to others to use.
Access all of the reports from the Current Folder
browser.

“Using MATLAB
Reports” on page 10-2

9-106



Preventing and Identifying Coding Problems

Preventing and Identifying Coding Problems

In this section...

“Ways to Prevent and Check for Coding Problems” on page 9-107

“Code Analysis Options” on page 9-107

“Determining Scope and Usage of Functions and Variables” on page 9-135

Ways to Prevent and Check for Coding Problems
MATLAB provides features to help you avoid potential problems as your write
your code and correct problems you introduce. In particular, you can:

• Highlight or provide a report on coding errors, inefficiencies, and potential
problems

MATLAB can check your code for problems and recommend modifications
to maximize performance and maintainability though messages, sometimes
referred to as M-Lint messages. For details, see “Code Analysis Options”
on page 9-107

• Highlight function and variable usage in your file

MATLAB can highlight function and variable usage throughout your file to
help you track their scope and usage. This can help you avoid or fix coding
problems that are the result of variable scoping mistakes. For details, see
“Determining Scope and Usage of Functions and Variables” on page 9-135.

Code Analysis Options
You can check for coding problems three different ways, all of which report
the same messages:

• Continuously check code in the Editor while you work.

View M-Lint messages and modify your file based on the messages. The
messages update automatically and continuously so you can see if your
changes addressed the issues noted in the messages. Some messages offer
extended information, automatic code correction, or both. For details about
using the continuous checking and correction interface in the Editor, see
“Automatically Analyzing Code in the Editor” on page 9-108.

9-107



9 Editing and Debugging MATLAB® Code

• Run a report for an existing MATLAB code file:

1 From a file in the Editor, select Tools > Code Analyzer > Show Code
Analyzer Report.

2 Modify your file based on the M-Lint messages in the report.

3 Save the file.

4 Rerun the report to see if your changes addressed the issues noted in
the messages.

• Run a report for all files in a folder:

1 In the Current Folder browser, click the Actions button .

2 Select Reports > Code Analyzer Report.

3 Modify your files based on the messages in the report.

For details, see “Using the Code Analyzer Report” on page 10-22.

4 Save the file.

5 Rerun the report to see if your changes addressed the issues noted in
the messages.

Automatically Analyzing Code in the Editor
To use continuous code checking in a MATLAB code file in the Editor:

1 Select File > Preferences > Code Analyzer, and then select the Enable
integrated warning and error messages check box.

2 Set the Underlining option to Underline warnings and errors, and
then click OK.

9-108



Preventing and Identifying Coding Problems

3 Open a MATLAB code file in the Editor. This example uses the sample file
lengthofline.m that ships with the MATLAB software:

a Open the example file:

open(fullfile(matlabroot,'help','techdoc','matlab_env',...

9-109



9 Editing and Debugging MATLAB® Code

'examples','lengthofline.m'))

b Save the example file to a folder to which you have write access. For the
example, lengthofline.m is saved to I:\my_MATLAB_files.

4 Examine the message indicator at the top right edge of the window to see
the M-Lint messages reported for the file:

• Red indicates syntax errors were detected. Another way to detect some
of these errors is using syntax highlighting to identify unterminated
strings, and delimiter matching to identify unmatched keywords,
parentheses, braces, and brackets.

• Orange indicates warnings or opportunities for improvement, but no
errors, were detected.

• Green indicates no errors, warnings, or opportunities for improvement
were detected.

In this example, the indicator is red, meaning that there is at least one
error in the file.

9-110



Preventing and Identifying Coding Problems

������������%����

�	������%	�������������

�������
���

9-111



9 Editing and Debugging MATLAB® Code

5 Click the message indicator to go to the next code fragment containing a
message. The next code fragment is relative to the current cursor position,
viewable in the status bar.

In the lengthofline example, the first message is at line 22. The cursor
moves to the beginning of line 22.

The code fragment for which there is a message is underlined in either red
for errors or orange for warnings and improvement opportunities.

6 View the message by moving the mouse pointer within the underlined
fragment. The message appears with a yellow highlighted background.

Position cursor within orange underlined code frament to 
display the related message.

This message means that in line 22, nothandle is assigned a value, but
is probably not used anywhere after that in the file. The line might be
extraneous and you could delete it. But it might be that you actually
intended to use the variable, as shown in step 7. Notice that the message
is a link to additional information. Message links are discussed in steps 9
and 10.

7 Modify your code as needed. The message indicator and underlining
automatically update to reflect the changes you make, even if you do not
save the file.

9-112



Preventing and Identifying Coding Problems

In this example, the intention was to use nothandle as a performance
improvement by determining the value before the loop. Changing
~ishandle(hline(nh)) in line 24 to nothandle(nh) means that there is
no longer a message associated with line 22.

8 In lengthofline, line 23, prod is underlined because there is a warning
message, and it is highlighted because an automatic fix is available. When
you view the message, it provides a button to apply the automatic fix. It
also indicates the keyboard controls (Alt+Enter) to apply the fix.

To view what the automated fix is, right-click the highlighted code (for
a single-button mouse, press Ctrl+click). The first item in the context
menu indicates the automatic fix that MATLAB can perform. Select it and
MATLAB automatically corrects the code. In this example, it replaces
prod(size(hline)) with numel(hline).

9-113



9 Editing and Debugging MATLAB® Code

After you apply the fix, MATLAB removes the underline from prod in
line 23.

9 Move the mouse pointer over the underlined code fragment data on line 34.

When you view this message, notice that it appears as a link. The link
indicates that there is more information about the message. Not all
messages have additional information.

10 Click the link in the message. The window expands to display an
explanation and user action.

9-114



Preventing and Identifying Coding Problems

11 Click the message indicator to go to the next message, or use the indicator
bar.

Each marker in the bar represents one or more lines that have associated
messages.

a Position the mouse pointer at a marker in the indicator bar to view the
message. For example, to see an error in lengthofline, position the
pointer at a red (error) marker in the indicator bar. There is only one
error in the file and with the pointer positioned over it, the associated
messages appears. (There can be multiple messages per line.) Click the

9-115



9 Editing and Debugging MATLAB® Code

marker to go to the first code fragment in the line that resulted in a
message. For the example, click the red marker, which takes you to the
first suspect code fragment in line 48.

temp = diff([data{1}(:) data{2}(:) data{3}(;)]);

Multiple messages can represent a single problem or multiple problems.
Addressing one might address all of them, or after addressing one, the
other messages might change or what you need to do might become
clearer.

Each marker
represents a 
message.

To view a message,
position the pointer
over a marker.

To go to the code 
fragment that resulted
in the message,
click a marker

b Modify the code to address the problem noted in the message—the
message indicators update automatically.

In the example, the message suggests a delimiter imbalance. You can
check that by following these steps:

i Select File > Preferences > Keyboard > Delimiter Matching, and
then selectMatch on arrow key, if it is not already selected.

ii Move the arrow key over each of the delimiters to see if MATLAB
indicates a mismatch.

9-116



Preventing and Identifying Coding Problems

In the example, it might appear that there are no mismatched
delimiters. However, code analysis detects the semicolon in
parentheses: data{3}(;), and interprets it as the end of a statement.
The message reports that the two statements on line 48 each have a
delimiter imbalance.

iii In line 48, change data{3}(;) to data{3}(:).

Now, the underline no longer appears in line 48. The single change
addresses the issues in both of the messages for line 48.

Because the change removed the only error in the file, the message
indicator at the top of the bar changes from red to orange, indicating
that only warnings and potential improvements remain.

If there are multiple messages associated with a line, there might be multiple
underlined code fragments that are adjacent, as in the previous step. It can
be difficult to display the message of interest. In such a case, it is easier to
view the messages through the marker on the indicator bar than moving the
arrow over each delimiter.

After modifying the code to address all the messages, or disabling designated
messages, the message indicator becomes green. The example file with all
messages addressed has been saved as lengthofline2.m. Open the example
file with the command:

open(fullfile(matlabroot,'help','techdoc',...
'matlab_env', 'examples','lengthofline2.m'))

Suppressing Message Indicators and Messages
Depending on the stage at which you are in completing a MATLAB file, you
might want to restrict the code underlining. You can do this by using the
Code Analyzer preference referred to in step 1, in “Preventing and Identifying
Coding Problems” on page 9-107. For example, when first coding, you might
prefer to underline only errors because warnings would be distracting. For
details, click the Help button in the Preferences dialog box.

Code analysis does not provide perfect information about every situation and
in some cases, you might not want to change the code based on a message. If

9-117



9 Editing and Debugging MATLAB® Code

you do not want to change the code, and you do not want to see the indicator
and M-Lint message for that line, suppress them. For the lengthofline
example, in line 49, the first message is Terminate statement with
semicolon to suppress output (in functions). Adding a semicolon to
the end of a statement suppresses output and is a common practice. Code
analysis alerts you to lines that produce output, but lack the terminating
semicolon. If you want to view output from line 49, do not add the semicolon
as the message suggests.

There are a few different ways to suppress (turn off) the indicators for
warning and error messages:

• “Suppress an Instance of a Message in the Current File” on page 9-118

• “Suppress All Instances of a Message in the Current File” on page 9-119

• “Suppress All Instances of a Message in All Files” on page 9-120

• “Specify Default Message Settings” on page 9-120

• “Specify Nondefault Message Settings” on page 9-121

• “Understanding Code Containing Suppressed Messages” on page 9-122

You cannot suppress error messages such as syntax errors. Therefore,
instructions on suppressing messages do not apply to those types of messages.

Suppress an Instance of a Message in the Current File. You can
suppress a specific instance of an M-Lint message in the current file. For
example, using the code presented in “Preventing and Identifying Coding
Problems” on page 9-107, follow these steps:

1 In line 49, right-click at the first underline (for a single-button mouse,
press Ctrl+click).

2 From the context menu, select Suppress ’Terminate statement with
semicolon...’ > On This Line.

The comment %#ok<NOPRT> appears at the end of the line, which instructs
MATLAB not to check for a terminating semicolon at that line. The
underline and mark in the indicator bar for that message disappear.

9-118



Preventing and Identifying Coding Problems

3 If there are two messages on a line that you do not want to display,
right-click separately at each underline and select the appropriate entry
from the context menu.

The %#ok syntax expands. For the example, in the code presented in
“Preventing and Identifying Coding Problems” on page 9-107, ignoring both
messages for line 49 adds %#ok<NBRAK,NOPRT>.

Even if Code Analyzer preferences are set to enable this message, the
specific instance of the message suppressed in this way does not appear
because the %#ok takes precedence over the preference setting. If you later
decide you want to check for a terminating semicolon at that line, delete
the %#ok<NOPRT> string from the line.

For more information about %#ok, see the mlint function reference page.

Suppress All Instances of a Message in the Current File. You can
suppress all instances of a specific M-Lint message in the current file. For
example, using the code presented in “Preventing and Identifying Coding
Problems” on page 9-107, follow these steps:

1 In line 49, right-click at the first underline (for a single-button mouse,
press Ctrl+click).

2 From the context menu, select Suppress ’Terminate statement with
semicolon...’ > In This File.

The comment %#ok<*NOPRT> appears at the end of the line, which instructs
MATLAB to not check for a terminating semicolon throughout the file. All
underlines, as well as marks in the message indicator bar that correspond
to this message disappear.

If there are two messages on a line that you do not want to display anywhere
in the current file, right-click separately at each underline, and then select
the appropriate entry from the context menu. The %#ok syntax expands.
For the example, in the code presented in “Preventing and Identifying
Coding Problems” on page 9-107, ignoring both messages for line 49 adds
%#ok<*NBRAK,*NOPRT>.

9-119



9 Editing and Debugging MATLAB® Code

Even if Code Analyzer preferences are set to enable this message, the message
does not appear because the %#ok takes precedence over the preference
setting. If you later decide you want to check for a terminating semicolon in
the file, delete the %#ok<*NOPRT> string from the line.

For more information about %#ok, see the mlint function reference page.

Suppress All Instances of a Message in All Files. You can disable all
instances of an M-Lint message in all files. For example, using the code
presented in “Preventing and Identifying Coding Problems” on page 9-107,
follow these steps:

1 In line 49, right-click at the first underline (for a single-button mouse,
press Ctrl+click).

2 From the context menu, select Suppress ’Terminate statement with
semicolon...’ > In All Files.

This modifies the Code Analyzer preference setting. For more information
about Code Analyzer preferences, including how to restore MATLAB default
settings, select File > Preferences > Code Analyzer, and then click Help.

Specify Default Message Settings. You can specify that you want certain
M-Lint messages to be disabled by default when you open any MATLAB file.
Typically, you do this if you find that you do not want certain messages or
categories of messages enabled for all or most of your MATLAB files.

Follow these steps:

1 Select File > Preferences > Code Analyzer.

The Preferences dialog box opens and displays the Code Analyzer
preferences pane.

2 Disable specific M-Lint messages, or categories of messages.

The Active Settings field now contains the value Default Settings
(modified).

3 Click Apply.

9-120



Preventing and Identifying Coding Problems

Now, each file you open uses the modified default settings. If you want to
restore the factory-installed default settings, decide if you want to save
the current settings to a file, as described in “Specify Nondefault Message
Settings” on page 9-121. Then, click the Actions button , and select
Restore Defaults.

Specify Nondefault Message Settings. You can specify that you want
certain M-Lint messages enabled or disabled, and then save those settings to
a file. When you want to use a settings file with a particular file, you select
it from the Code Analyzer preferences pane. That setting file remains in
effect until you select another settings file. Typically, you change the settings
file when you have a subset of files for which you want to use a particular
settings file.

Follow these steps:

1 Select File > Preferences > Code Analyzer

The Preferences dialog box opens and displays the Code Analyzer
preferences pane.

2 Enable or disable specific messages, or categories of messages.

3 Click the Actions button , select Save as, and then save the settings
to a txt file.

4 Click OK.

You can reuse these settings for any MATLAB file, or provide the settings file
to another user.

To use the saved settings:

1 In the Editor, select Tools > Code Analyzer.

The currently selected setting choice displays, preceded by a bullet point.
In the image shown here, the Default Settings are currently selected.

2 Choose from any of the settings files, such as the My_Settings example,
as shown here.

9-121



9 Editing and Debugging MATLAB® Code

The settings you choose are in effect for all MATLAB files until you select
another set of Code Analyzer settings.

Understanding Code Containing Suppressed Messages. If you receive
code that contains suppressed M-Lint messages, you might want to review
those messages without the need to unsuppress them first. A message might
be in a suppressed state for any of the following reasons:

• One or more %#ok<message-ID> pragmas are on a line of code that elicits a
message specified by <message-ID>.

• One or more %#ok<*message-ID> pragmas are in a file that elicits a
message specified by <message-ID>.

• It is cleared in the Code Analyzer preferences pane.

• It is disabled by default.

9-122



Preventing and Identifying Coding Problems

To determine the reasons why some messages are suppressed:

1 Search the file for the %#ok pragma and create a list of all the message
IDs associated with that pragma.

2 Open the Code Analyzer preferences dialog box by selecting
File > Preferences > Code Analyzer.

3 In the filter field, type msgid: followed by one of the message IDs, if any,
you found in step 1.

The message list now contains only the message that corresponds to
that ID. If the message is a hyperlink, click it to see an explanation and
suggested action for the message. This can provide insight into why the
message is suppressed or disabled. The following image shows how the
Preferences dialog box appears when you enter msgid:CPROP in the filter
field.

4 Click the button to clear the filter field, and then repeat step 3 for each
message ID you found in step 1.

9-123



9 Editing and Debugging MATLAB® Code

5 Click the button to clear the filter field.

6 Filter the messages to display those that are disabled by default and
disabled in the Preferences pane by clicking the down arrow to the right of
the filter field. Then, click Show Disabled Messages.

7 Review the message associated with each message ID to understand why it
is suppressed in the code or disabled in Preferences.

Setting Code Analyzer Preferences
Use Code Analyzer preferences to adjust how M-Lint messages appear. These
preferences apply to M-Lint messages in the Editor, the Embedded MATLAB®

Editor (if you have products which use that tool), and the Code Analyzer
Report, with a few exceptions. For more information, see “Preventing and
Identifying Coding Problems” on page 9-107.

This section contains information about the following topics:

• Enable Integrated Warning and Error Messages

• Restricting Underlining in the Editor

• Changing the Color that the Code Analyzer Uses to Indicate an Automatic
Fix Is Available

• Choosing the Messages to Display in Your Code

• Filtering the Messages Displayed in the Preferences Pane

• Saving Your Preferred Settings

• Using Your Saved Settings

• Using Default Settings

• “Enabling MATLAB Compiler Deployment Messages” on page 9-132

9-124



Preventing and Identifying Coding Problems

Enable Integrated Warning and Error Messages. Select this check box if
you want the Editor to show M-Lint messages in the file. This preference does
not apply to the Code Analyzer Report. When you select this preference, the
Editor provides visual cues that alert you to potential errors, problems, and
opportunities for improvement in your code. These visual cues take the form
of underlines and a message indicator bar. From these cues, you can view a
message for each line of a file that code analysis indicates you might be able
to improve. For example, a common message is that a variable is defined but
never used in the file.

Underlining

Restrict the underlining notification using the associated drop-down list. The
list is available only when you select Enable integrated warning and
error messages. Options are:

• Underline warnings and errors

• Underline errors only

• No underlines

Underlining for errors is red and for warnings is orange. For all of the
underlining options, the Editor provides the marks for errors and warnings
in the indicator bar.

You might choose a different option at different stages in your workflow. For
example, when first coding, you might prefer no underlines because they
would appear as you enter a statement and might be distracting. Later, you
might choose to underline only errors to help you debug your file. Finally,
when tweaking an existing file, you might want to underline warnings and
errors because the file is in a state that you can fix any issues you introduce.

Autofix

Click Adjust autofix highlight color to open the Colors Programming Tools
Preferences dialog box. This dialog box enables you adjust the color that
highlights errors and warnings that MATLAB can autofix. By default, this

9-125



9 Editing and Debugging MATLAB® Code

color is pale orange. Trigger autofix by clicking the Fix button in a code
analyzer message. Autofixes are not available for all messages.

Active settings. When you have integrated warnings and error messages
enabled, use Code Analyzer settings to show or hide specific M-Lint messages
for your code. If you are new to using the code analysis or MATLAB, use the
default settings. After you are familiar with code analysis and MATLAB,
consider suppressing the display of certain M-Lint messages.

To suppress a message on a line-by-line or file-by-file basis, see “Suppressing
Message Indicators and Messages” on page 9-117, or the mlint function.

To suppress messages in multiple files, it is more convenient to disable the
Code Analyzer preference settings, as described here:

1 Use the filter field to filter the messages displayed in the Active settings
table. For details, see Filtering Messages on page 127.

2 Click the link for a given message (if available) to get more information
about that message, including an explanation and suggested action.

3 In the Active settings table, select check boxes or clear check boxes to
enable or disable messages, respectively. To enable or disable a set of
messages simultaneously, highlight the messages in the Active settings
table, right-click, and then select Enable or Disable.

Enabled messages display and disabled messages do not display in the
Editor.

4 Click Apply or OK to save the changes.

9-126



Preventing and Identifying Coding Problems

As with all preferences, MATLAB retains the settings for your next session.

Note The MATLAB Compiler (deployment) messages category is the
only one that you can enable or disable by category. The Code Analyzer
preferences pane only displays the MATLAB Compiler (deployment)
messages category if you have MATLAB® Compiler™ installed.

Filtering Messages

You can filter the list of M-Lint messages in the Preferences dialog box to
display only those messages that are currently of interest to you. Use any
combination of the methods that the following table presents.

Note If you do not have the MATLAB Compiler installed, the Code Analyzer
preferences pane does not display the MATLAB Compiler (deployment)
messages category.

To see a list of
messages that:

Perform this action: Example Scenario

Contain a given string
in the:

• Short message

• Extended message

• Message category

• Message ID

Type the string in the filter field. You recall seeing a message
containing a certain string that
you want to review, but you
cannot remember the exact
message text.

For example, type com in the
filter field to display those
messages that contain that string
in the short message, extended
message, or message ID.

Correspond to a given
message ID

Type msgid: followed by the
message ID in the filter field.

You are reviewing the code that
someone else wrote and you
want to see the message that

9-127



9 Editing and Debugging MATLAB® Code

To see a list of
messages that:

Perform this action: Example Scenario

corresponds to a suppressed one
using the %#ok<AGROW> pragma.

Type msgid:agrow in the filter
field. The message corresponding
to AGROW is a link. Click it for
more information about the
message.

Not all M-Lint messages have
additional information. These
messages do not appear as links.

You can set using Code
Analyzer Preferences

Click the down arrow to the right
of the search field, and then click
Show All.

You want to see the complete
list of messages after you have
filtered the messages on a given
string or filter menu option.

Are different from
the default setting (of
enabled or disabled)

Click the down arrow to the right
of the search field, and then click
Show Messages Modified from
Default.

A gray dot precedes a message
with a setting different from the
default. For example:

A coworker gave you a settings
file and you want to review
each message that the coworker
changed from its default setting.

Are in a given category Click the down arrow to the right
of the filter field, click Show
Messages in Category, and
then click the category you want.

You want to review messages
that describe coding practices
that make it difficult for others to
use your code.

Click the down arrow to the
right of the filter field, select
Show Messages in Category,
and then select Aesthetics and
Readability.

9-128



Preventing and Identifying Coding Problems

To see a list of
messages that:

Perform this action: Example Scenario

Click the messages that appear
as links for more information.
Not all messages appear as links.

Are warnings Click the down arrow to the
right of the filter field, and then
select Show All Warnings. An
exclamation point in a yellow
triangle indicates a warning
message.

You recall previous warnings
that your code generated, but you
cannot remember enough details
to use the filter field to find it.
You want to skim all the warning
messages to find a particular one
of interest.

Are errors Click the down arrow to the right
of the filter field, and then select
Show All Errors. By default, an
X in a red dot indicates an error
message, .

You want to find a message that
a script you worked on previously
elicited. All you can recall is that
it was an error and it involved
parfor.

Click the down arrow to the right
of the filter field, and then select
Show All Errors. Then, type
a space and parfor in the filter
field.

The Code Analyzer preference
pane displays only error messages
that contain the word parfor.

Are disabled Click the down arrow to the right
of the filter field, and then select
Show Disabled Messages.

You want to see the messages
that are disabled by default or
that you have previously disabled.

Example of Filtering Messages

To display M-Lint error messages that contain the string comma and are
disabled:

1 Click the arrow next to the filter field and select Show All Errors.

9-129



9 Editing and Debugging MATLAB® Code

The filter field contains the string severity:error.

2 At the end of the string severity:error, press the Space key, and then
type comma.

3 Click the arrow next to the filter field and select Show Disabled
Messages.

9-130



Preventing and Identifying Coding Problems

The filter field now contains the string, severity:error comma
enabled:false. Only the messages that fulfill those requirements appear in
the Preferences pane.

To restore the list of all messages, click the Clear search button .

Saving Settings

If you are likely to use different settings at different times, or if you want to
make these settings available to other users, click the Actions button , and
then select Save As. MATLAB prompts you to provide the name of the txt
file to which it will save the settings. The default location for settings is the
MATLAB preferences folder (the folder returned when you run prefdir),
although you can choose a different folder when saving.

Using Saved Settings

To use settings previously saved, select the settings txt file from the Active
settings drop-down list. Or, select Browse from the Active settings
drop-down list to locate the settings file. Then click Apply or OK to make the
settings take effect. You can also access saved settings from within the Editor
using Tools > Code Analyzer, or the indicator bar.

After selecting a settings file, you can modify the settings, but your changes
automatically modify the txt file. If you want to retain the current settings in
the txt file, create a copy of the settings file for modification. To do so, click
the Actions button , select Save As, and then save the file to a different
name. Make modifications to the newly named file.

Default Settings

The Active settings indicator shows Default Settings when you are using
the default settings rather than settings from a txt file. The term (modified)
appears when you modify the default settings, but have not yet saved the
changes to a file. To undo any unsaved changes and return to the default
settings, click the Actions button , and then select Restore Defaults. If

9-131



9 Editing and Debugging MATLAB® Code

you think you will use the modified default settings in a future session, save
the settings as described in Saving Settings on page 131.

Enabling MATLAB Compiler Deployment Messages. You can switch
between showing or hiding Compiler deployment messages when you work on
a file. Change the Code Analyzer preference for this message category. Your
choice likely depends on whether you are working on a file to be deployed.
When you change the preference, it also changes the setting in the Editor.
The converse is also true—when you change the setting from the Editor,
it effectively changes this preference. However, if the dialog box is open at
the time you modify the setting in the Editor, you will not see the changes
reflected in the Code Analyzer preferences dialog box . Whether you change
the setting from the Editor or from the Code Analyzer preferences dialog box,
it applies to the Editor and to the Code Analyzer Report.

To enable MATLAB Compiler deployment messages:

1 Select File > Preferences > Code Analyzer.

2 Click the down arrow next to the filter field, and then select Show
Messages in Category > MATLAB Compiler (deployment) messages.

3 Click the Enable Category button.

4 Clear individual messages that you do not want to display for your code
(if any).

The settings txt file, which you can create as described in Saving Settings on
page 131, includes the status of this setting.

Understanding the Limitations of Code Analysis. Code analysis is a
valuable tool, but there are some limitations:

• Sometimes, it fails to produce M-Lint messages where you expect them.

By design, code analysis attempts to minimize the number of incorrect
messages it returns, even if this behavior allows some issues to go
undetected.

• Sometimes, it produces messages that do not apply to your situation.

9-132



Preventing and Identifying Coding Problems

Links to additional information, when available in a message, can help you
to make this determination. Error messages are almost always problems.
However, many warnings are suggestions to look at something in the code
that is unusual and therefore suspect, but might be correct in your case.

Suppress a warning message if you are certain that the message does not
apply to your situation. If your reason for suppressing a message is subtle
or obscure, include a comment giving the rationale. That way, those who
read your code are aware of the situation.

For details, see “Suppressing Message Indicators and Messages” on page
9-117.

These sections describe code analysis limitations with respect to the following:

Distinguishing Function Names from Variable Names

Code analysis cannot always distinguish function names from variable names.
For the following code, if the M-Lint message is enabled, code analysis returns
the message, M-Lint cannot determine whether xyz is a variable or
a function, and assumes it is a function. Code analysis cannot make
a determination because xyz has no obvious value assigned to it. However,
the program might have placed the value in the workspace in a way that
code analysis cannot detect.

function y=foo(x)
.
.
.
y = xyz(x);

end

For example, in the following code, xyz can be a function, or can be a
variable loaded from the MAT-file. Code analysis has no way of making
a determination.

function y=foo(x)
load abc.mat
y = xyz(x);

end

9-133



9 Editing and Debugging MATLAB® Code

Variables might also be undetected by code analysis when you use the eval,
evalc, evalin, or assignin functions.

If code analysis mistakes a variable for a function, do one of the following:

• Initialize the variable so that code analysis does not treat it as a function.

• For the load function, specify the variable name explicitly in the load
command line. For example:

function y=foo(x)
load abc.mat xyz
y = xyz(x);

end

Distinguishing Structures from Handle Objects

Code analysis cannot always distinguish structures from handle objects. In
the following code, if x is a structure, you might expect an M-Lint message
indicating that the code never uses the updated value of the structure. If x is
a handle object, however, then this code can be correct.

function foo(x)
x.a = 3;

end

Code analysis cannot determine whether x is a structure or a handle object. To
minimize the number of incorrect messages, code analysis returns no message
for the previous code, even though it might contain a subtle and serious bug.

Distinguishing Built-In Functions from Overloaded Functions

Code analysis does not use the MATLAB path information because it can be
different, depending on whether you are editing or running the program.
If some built-in functions are overloaded in a class or on the path, M-Lint
messages might apply to the built-in function, but not to the overloaded
function you are calling. In this case, suppress the message on the line where
it appears or suppress it for the entire file.

9-134



Preventing and Identifying Coding Problems

For information on suppressing messages, see “Suppressing Message
Indicators and Messages” on page 9-117.

Determining the Size or Shape of Variables

Code analysis has a limited ability to determine the type of variables and the
shape of matrixes. Code analysis might produce M-Lint messages that are
appropriate for the most common case, such as for vectors. However, these
messages might be inappropriate for less common cases, such as for matrixes.

Analyzing Class Definitions with Superclasses

Because code analysis looks at one file at a time and does not use the path, it
has no way to analyze superclasses. Therefore, the amount of checking that
code analysis can provide for a class definition with superclasses is limited.
In general, code analysis cannot always tell whether the class is a handle
class. It makes an educated guess, but often cannot get enough information,
to make a determination for certain.

Analyzing Methods

Most class methods must contain at least one argument that is an object of
the same class as the method. But it does not always have to be the first
argument. When it is, code analysis can determine that an argument is an
object of the class you are defining, and it can do various checks. For example,
it can check that the property and method names exist and are spelled
correctly. However, when code analysis cannot determine that an object is an
argument of the class you are defining, then it cannot provide these checks.

Determining Scope and Usage of Functions and
Variables
Scoping issues can be the source of some coding problems. For instance, if you
are unaware that nested functions share a particular variable, results of
running your code might not be as you expect. Similarly, mistakes in usage of
local, global, and persistent variables can cause unexpected results.

9-135



9 Editing and Debugging MATLAB® Code

Code analysis does not always indicate scoping issues because sharing a
variable across nested functions is not an error—it may be your intent.
UseMATLAB function and variable highlighting features to identify when
and where your code uses functions and variables. If you have an active
Internet connection, you can watch the Variable and Function Highlighting
video demo for an overview of the major features.

For conceptual information on nested functions and the various types of
MATLAB variables, see “Variable Scope in Nested Functions” and “Types
of Variables”.

Using Automatic Function and Variable Highlighting
By default, automatic function and local variable highlighting is enabled, as is
nonlocal variable highlighting. To enable and disable highlighting or change
the highlighting colors, selectFile > Preferences > Colors > Programming
tools.

By default, the Editor:

• Highlights all instances of a function or local variable in sky blue when you
place the cursor within a function or variable name. For instance:

• Displays nonlocal variable names in teal blue, regardless of the cursor
location. For instance:

Example of Using Automatic Function and Variable
Highlighting
Consider the code for a function rowsum:

function rowTotals = rowsum
% Add the values in each row and
% store them in a new array

x = ones(2,10);
[n, m] = size(x);
rowTotals = zeros(1,n);

9-136



Preventing and Identifying Coding Problems

for i = 1:n
rowTotals(i) = addToSum;

end

function colsum = addToSum
colsum = 0;
thisrow = x(i,:);
for i = 1:m

colsum = colsum + thisrow(i);
end

end

end

When you run this code, instead of returning the sum of the values in each
row and displaying:

ans =

10 10

MATLAB displays:

ans =

0 0 0 0 0 0 0 0 0 10

Examine the code by following these steps:

1 Copy the code into the Editor.

Notice the variable appears in teal blue, which indicates i is not a local
variable. Both the rowTotals function and the addToSum functions set
and use the variable i.

The variable n, at line 6 appears in black, indicating that it does not span
multiple functions.

9-137



9 Editing and Debugging MATLAB® Code

2 Hover the mouse pointer over an instance of variable i.

A tooltip appears: The scope of variable ’i’ spans multiple functions.

3 Click the tooltip link for information about variables whose scope span
multiple functions.

9-138



Preventing and Identifying Coding Problems

4 Click an instance of i.

Every reference to i highlights in sky blue, the status bar indicates 5
usages of i found, and markers appear in the indicator bar on the right
side of the Editor. One marker appears for each highlighted item.

5 Hover over one of the indicator bar markers.

9-139



9 Editing and Debugging MATLAB® Code

A tooltip appears and displays the name of the function or variable and the
line of code represented by the marker.

6 Click a marker to navigate to the line indicated in tooltip for that marker.

This is particularly useful when your file contains more code than you
can view at one time in the Editor.

Fix the code by changing the instance of i at line 15 to y.

You can see similar highlighting effects when you click on a function
reference. For instance, click on addToSum.

9-140



Debugging Process and Features

Debugging Process and Features

In this section...

“Ways to Debug MATLAB Files” on page 9-141

“Preparing for Debugging” on page 9-141

“Setting Breakpoints” on page 9-144

“Running a File with Breakpoints” on page 9-148

“Stepping Through a File” on page 9-150

“Examining Values” on page 9-152

“Correcting Problems and Ending Debugging” on page 9-158

“Using Conditional Breakpoints” on page 9-166

“Breakpoints in Anonymous Functions” on page 9-168

“Breakpoints in Methods That Overload Functions” on page 9-169

“Error Breakpoints” on page 9-170

Ways to Debug MATLAB Files
You can debug MATLAB files using the Editor, which is a graphical user
interface, as well as by using debugging functions from the Command
Window. You can use both methods interchangeably. These topics and the
example describe both methods.

Preparing for Debugging
Do the following to prepare for debugging:

1 Open the file — To use the Editor for debugging, open it with the file to run.

2 Save changes — If you are editing the file, save the changes before you
begin debugging. If you try to run a file with unsaved changes from within
the Editor, the file is automatically saved before it runs. If you run a file
with unsaved changes from the Command Window, MATLAB software
runs the saved version of the file. Therefore, you do not see the results
of your changes.

9-141



9 Editing and Debugging MATLAB® Code

3 Add the files to a folder on the search path or put them in the current
folder. Be sure the file you run and any files it calls are in folders that are
on the search path. If all required files are in the same folder, you can
instead make that folder the current folder.

Debugging Example — The Collatz Problem
The debugging process and features are best described using an example. To
prepare to use the example, create two files, collatz.m and collatzplot.m,
that produce data for the Collatz problem.

For any given positive integer, n, the Collatz function produces a sequence of
numbers that always resolves to 1. If n is even, divide it by 2 to get the next
integer in the sequence. If n is odd, multiply it by 3 and add 1 to get the next
integer in the sequence. Repeat the steps until the next integer is 1. The
number of integers in the sequence varies, depending on the starting value, n.

The Collatz problem is to prove that the collatz function resolves to 1 for
all positive integers. The files for this example are useful for studying the
Collatz problem. The file collatz.m generates the sequence of integers for
any given n. The file collatzplot.m calculates the number of integers in the
sequence for all integers from 1 through m, and plots the results. The plot
shows patterns that you can study further.

Following are the results when n is 1, 2, or 3.

n Sequence Number of Integers
in the Sequence

1 1 1

2 2 1 2

3 3 10 5 16 8 4 2 1 8

Files for the Collatz Problem. Following are the two files you use for the
debugging example. To create these files on your system, open two new files.
Select and copy the following code from the Help browser and paste it into the
files. Save and name the files collatz.m and collatzplot.m. Save them to
your current folder or add the folder where you save them to the search path.
One of the files has an embedded error to illustrate the debugging features.

9-142



Debugging Process and Features

Open the files by issuing the following commands, and then saving each file
to a local folder:

open(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','collatz.m'))

open(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','collatzplot.m'))

Trial Run for the Example. Open the file collatzplot.m. Make sure that
the current folder is the folder in which you saved collatzplot.

Try out collatzplot to see if it works correctly. Use a simple input value,
for example, 3, and compare the results to those shown in the preceding
table. Typing

collatzplot(3)

produces the plot shown in the following figure.

9-143



9 Editing and Debugging MATLAB® Code

The plot for n = 1 appears to be correct—for 1, the Collatz series is 1, and
contains one integer. But for n = 2 and n = 3, it is wrong. There should be only
one value plotted for each integer, the number of integers in the sequence,
which the preceding table shows to be 2 (for n = 2) and 8 (for n = 3). Instead,
multiple values are plotted. Use MATLAB debugging features to isolate the
problem.

Setting Breakpoints
Set breakpoints to pause execution of the MATLAB file so you can examine
values where you think the problem can be. You can set breakpoints in the
Editor, using functions in the Command Window, or both.

9-144



Debugging Process and Features

There are three basic types of breakpoints you can set in MATLAB files:

• A standard breakpoint, which stops at a specified line in a file. For details,
see “Setting Standard Breakpoints” on page 9-146.

• A conditional breakpoint, which stops at a specified line in a file only under
specified conditions. For details, see “Using Conditional Breakpoints” on
page 9-166.

• An error breakpoint that stops in any file when it produces the specified
type of warning, error, or NaN or infinite value. For details, see “Error
Breakpoints” on page 9-170.

You can disable standard and conditional breakpoints so that MATLAB
temporarily ignores them, or you can remove them. For details, see “Disabling
and Clearing Breakpoints” on page 9-159. Breakpoints do not persist after
you exit the MATLAB session.

You can only set valid standard and conditional breakpoints at executable
lines in saved files that are in the current folder or in folders on the search
path. When you add or remove a breakpoint in a file that is not in a folder
on the search path or in the current folder, a dialog box appears. This dialog
box presents options that allow you to add or remove the breakpoint. You can
either change the current folder to the folder containing the file, or you can
add the folder containing the file to the search path.

Do not set a breakpoint at a for statement if you want to examine values at
increments in the loop. For example, in

for n = 1:10
m = n+1;

end

MATLAB executes the for statement only once, which is efficient. Therefore,
when you set a breakpoint at the for statement and step through the file, you
only stop at the for statement once. Instead place the breakpoint at the next
line, m=n+1 to stop at each pass through the loop.

You cannot set breakpoints while MATLAB is busy, for example, running a
file, unless that file is paused at a breakpoint.

9-145



9 Editing and Debugging MATLAB® Code

Setting Standard Breakpoints
To set a standard breakpoint using the Editor:

1 If you have changed the file, save it.

2 Click in the breakpoint alley at an executable line where you want to set
the breakpoint.

• The breakpoint alley is the narrow column on the left side of the Editor,
to the right of the line number.

• Executable lines are preceded by a - (dash).

If you attempt to set breakpoints at lines that are not executable, such
as comments or blank lines, MATLAB sets it at the next executable line.

Other ways to set a breakpoint are to:

• Position the cursor in an executable line and then click the Set/clear
breakpoint button on the toolbar.

• From the Debug menu, select Set/Clear Breakpoint.

Setting Breakpoints for the Example. It is unclear whether the problem
in the example is in collatzplot or collatz. To start, follow these steps:

1 In collatzplot.m, click the dash in the breakpoint alley at line 9 to set a
breakpoint.

This breakpoint enables you to step into collatz to see if the problem
is there.

2 Set additional breakpoints at lines 10 and 11.

These breakpoints stop the program so you can examine the interim results.

9-146



Debugging Process and Features

Valid 
breakpoint

Dash

Understanding Valid (Red) and Invalid (Gray) Breakpoints. Red
breakpoints indicate valid standard breakpoints.

Breakpoints are gray for either of these reasons:

• There are unsaved changes in the file. Save the file to make breakpoints
valid. The gray breakpoints become red, indicating they are now valid. Any
gray breakpoints that you entered at invalid breakpoint lines automatically
move to the next valid breakpoint line with a successful file save.

• There is a syntax error in the file. When you set a breakpoint, an error
message appears indicating where the syntax error is. Fix the syntax error
and save the file to make breakpoints valid.

The following image shows three invalid breakpoints at lines 9, 10, and 11.
Notice the asterisk next to the file name in the title bar. It indicates the file
has unsaved changes.

9-147



9 Editing and Debugging MATLAB® Code

Function Alternative for Setting Breakpoints
To set a breakpoint using the debugging functions, use dbstop. For the
example, type:

dbstop in collatzplot at 9
dbstop in collatzplot at 10
dbstop in collatzplot at 11

Running a File with Breakpoints
After setting breakpoints, run the file from the Command Window or the
Editor.

9-148



Debugging Process and Features

Running the Example
For the example, run collatzplot for the simple input value, 3, by typing the
following in the Command Window:

collatzplot(3)

The example, collatzplot, requires an input argument and therefore runs
only from the Command Window or from a run configuration with a value
specified.

Results of Running a File Containing Breakpoints
Running the file results in the following:

• The prompt in the Command Window changes to

K>>

indicating that MATLAB is in debug mode.

• The program pauses at the first breakpoint. This means that line will be
executed when you continue. The pause is indicated in the Editor by the
green arrow just to the right of the breakpoint. In the example, the pause
is at line 9 of collatzplot, as shown here:

If you use debugging functions from the Command Window, the line at
which you are paused is displayed in the Command Window. For the
example, it would show:

• The function displayed in the Stack field on the toolbar changes to
reflect the current function (sometimes referred to as the caller or calling
workspace). The call stack includes subfunctions as well as called functions.
If you use debugging functions from the Command Window, use dbstack to
view the current call stack.

• If the file you are running is not in the current folder or a folder on the
search path, you are prompted to either add the folder to the path or
change the current folder.

9-149



9 Editing and Debugging MATLAB® Code

In debug mode, you can set breakpoints, step through programs, examine
variables, and run other functions.

MATLAB software could become nonresponsive if it stops at a breakpoint
while displaying a modal dialog box or figure that your file creates. In that
event, press Ctrl+C to go the MATLAB prompt.

Stepping Through a File
While debugging, you can step through a MATLAB file, pausing at points
where you want to examine values.

Use any of the following methods:

• The Editor toolbar buttons

If the toolbar is not displaying, right-click the Editor menu bar, and then
select Editor Toolbar.

• Step options in the Editor Debug menu

• The dbstep or dbcont function

Details about these methods appear in the following table.

Toolbar Button Debug Menu
Item

Description Function
Alternative

Run file or Run
Configuration
for file

Commence execution of file and
run until completion or until
a breakpoint is encountered.
The Run Configurations for
file menu option provides a
submenu. The submenu enables
you to select a particular run
configuration or to edit the run
configurations for the MATLAB
file. If you choose Run file,
MATLAB uses the default run
configuration.

None

9-150



Debugging Process and Features

Toolbar Button Debug Menu
Item

Description Function
Alternative

None GoUntil Cursor Continue execution of file until
the line where the cursor is
positioned. Also available on the
context menu.

None

Step Execute the current line of the
file.

dbstep

Step In Execute the current line of the
file and, if the line is a call to
another function, step into that
function.

dbstep in

Continue Resume execution of file until
completion or until another
breakpoint is encountered.

dbcont

Step Out After stepping in, run the
rest of the called function or
subfunction, leave the called
function, and pause.

dbstep out

Exit Debug
Mode

Exit debug mode. dbquit out

Continue Running in the Example
In the example, collatzplot is paused at line 9. Because the problem results
are correct for N/n = 1, continue running until N/n = 2. Press the Continue
button three times to move through the breakpoints at lines 9, 10, and 11.
Now the program is again paused at the breakpoint at line 9.

Stepping into the Called Function in the Example
Now that collatzplot is paused at line 9 during the second iteration, use the
Step In button or type dbstep in in the Command Window to step into
collatz and walk through that file. Stepping into line 9 of collatzplot goes
to line 9 of collatz. If collatz is not open in the Editor, it automatically
opens if you have selected Debug > Open Files When Debugging.

9-151



9 Editing and Debugging MATLAB® Code

The pause indicator at line 9 of collatzplot changes to a hollow arrow ,
indicating that MATLAB control is now in a subfunction called from the main
program. The call stack shows that the current function is now collatz.

In the called function, collatz in the example, you can do the same things
you can do in the main (calling) function—set breakpoints, run, step through,
and examine values.

Examining Values
While the program is paused, you can view the value of any variable currently
in the workspace. Examine values when you want to see whether a line of
code has produced the expected result or not. If the result is as expected,
continue running or step to the next line. If the result is not as you expect,
then that line, or a previous line, contains an error. Use the following methods
to examine values:

• “Selecting the Workspace” on page 9-152

• “Viewing Values as Data Tips in the Editor” on page 9-153

• “Viewing Values in the Command Window” on page 9-154

• “Viewing Values in the Workspace Browser and Variable Editor” on page
9-155

• “Evaluating a Selection” on page 9-156

• “Examining Values in the Example” on page 9-156

• “Problems Viewing Variable Values from the Parent Workspace” on page
9-157

Many of these methods are used in “Examining Values in the Example” on
page 9-156.

Selecting the Workspace
Variables assigned through the Command Window and created using scripts
are considered to be in the base workspace. Variables created in a function
belong to their own function workspace. To examine a variable, you must
first select its workspace. When you run a program, the current workspace
is shown in the Stack field. To examine values that are part of another

9-152



Debugging Process and Features

workspace for a currently running function or for the base workspace, first
select that workspace from the list in the Stack field.

If you use debugging functions from the Command Window:

• To display the call stack, use dbstack.

• To change to a different workspace, use dbup and dbdown.

• To list the variables in the current workspace, use who or whos.

Workspace in the Example. At line 9 of collatzplot, you stepped in,
and the current line is 9 in collatz. The Stack field shows that collatz is
the current workspace.

Viewing Values as Data Tips in the Editor
In the Editor, position the mouse pointer to the left of a variable. Its current
value appears in a data tip, which is like a tooltip for data. The data tip stays
in view until you move the pointer. If you have trouble getting the data tip to
appear, click in the line containing the variable and then move the pointer
next to the variable.

A related function is datatipinfo.

You must enable the Enable datatips in edit mode preference, which is
disabled by default. For details, see “Setting Display Preferences” on page
9-16.

Data Tips in the Example. Position the mouse pointer over n in line 9 of
collatz. The data tip shows that n = 2, as expected.

9-153



9 Editing and Debugging MATLAB® Code

Viewing Values in the Command Window
You can examine values while in debug mode at the K>> prompt. To see the
variables currently in the workspace, use who. Type a variable name in the
Command Window and it displays the variable’s current value. For the
example, to see the value of n, type

n

The Command Window displays the expected result

n =
2

and displays the debug prompt, K>>.

9-154



Debugging Process and Features

Viewing Values in the Workspace Browser and Variable Editor
You can view the value of variables in the Value column of the Workspace
browser. The Workspace browser displays all variables in the current
workspace. Use Stack in the Workspace browser to change to another
workspace and view its variables.

The Value column does not show all details for all variables. To see details,
double-click a variable in the Workspace browser. The Variable Editor opens,
displaying the content for that variable. You can open the Variable Editor
directly for a variable using openvar.

To see the value of n in the Variable Editor for the example, type

openvar n

and the Variable Editor opens, showing that n = 2 as expected.

9-155



9 Editing and Debugging MATLAB® Code

Evaluating a Selection
Select a variable or equation in a MATLAB file in the Editor. Right-click
and select Evaluate Selection from the context menu (for a single-button
mouse, press Ctrl+click). The Command Window displays the value of the
variable or equation. You cannot evaluate a selection while MATLAB is busy,
for example, running a file.

Examining Values in the Example
Step from line 9 through line 13 in collatz. Step again, and the pause
indicator jumps to line 17, just after the if loop, as expected. Step again, to
line 18, check the value of sequence in line 17 and see that the array is

2 1

as expected for n = 2. Step again, which moves the pause indicator from line
18 to line 11. At line 11, step again. Because next_value is now 1, the while
loop ends. The pause indicator is at line 11 and appears as a green down
arrow . This indicates that processing in the called function is complete and
program control will return to the calling program. Step again from line 11 in
collatz and execution is now paused at line 9 in collatzplot.

Note that instead of stepping through collatz, the called function, as was
just done in this example, you can step out from a called function back to the
calling function, which automatically runs the rest of the called function and
returns to the next line in the calling function. To step out, use the Step Out
button or type dbstep out in the Command Window.

9-156



Debugging Process and Features

In collatzplot, step again to advance to line 10, and then to line 11. The
variable seq_length in line 10 is a vector with the elements:

1 2

which is correct.

Finally, step again to advance to line 12. Examining the values in line 11,
N = 2 as expected, but the second variable, plot_seq, has two values, where
only one value is expected. While the value for plot_seq is as expected:

2 1

it is the incorrect variable for plotting. Instead, seq_length(N) should be
plotted.

Problems Viewing Variable Values from the Parent Workspace
Sometimes, if you set a breakpoint in a function, and then attempt to view
the value of a variable in the parent workspace using the dbup command, the
value of the variable is currently under construction. Therefore, the value
is not available. This is true whether you view the value by specifying the
dbup command in the Command Window or by using the Stack field on the
Editor toolbar.

In such cases, MATLAB returns the following message, where x is the
variable for which you are trying to examine the value:

K>> x
??? Reference to a called function result under construction x.

For example, suppose you have code such as the following:

x = collatz(x);

MATLAB detects that the evaluation of collatz(x) replaces the input
variable, x. To optimize memory use, MATLAB overwrites the memory that
x currently occupies to hold a new value for x. When you request the value
of x, and it is under construction, its value is not available, and MATLAB
displays the error message.

9-157



9 Editing and Debugging MATLAB® Code

Correcting Problems and Ending Debugging
The following are some of the ways to correct problems and end the debugging
session:

• “Changing Values and Checking Results” on page 9-158

• “Ending Debugging” on page 9-158

• “Disabling and Clearing Breakpoints” on page 9-159

• “Saving Breakpoints” on page 9-161

• “Correcting Problems in a MATLAB File” on page 9-161

• “Completing the Example” on page 9-162

• “Running Sections in MATLAB Files That Have Unsaved Changes” on
page 9-165

“Completing the Example” on page 9-162 uses many of these features.

Changing Values and Checking Results
While debugging, you can change the value of a variable in the current
workspace to see if the new value produces expected results. While the
program is paused, assign a new value to the variable in the Command
Window, Workspace browser, or Variable Editor. Then continue running or
stepping through the program. If the new value does not produce the expected
results, the program has a different problem.

Ending Debugging
After identifying a problem, end the debugging session. You must end a
debugging session if you want to change and save a file to correct a problem,
or if you want to run other functions in MATLAB.

9-158



Debugging Process and Features

Note Quit debug mode before editing a file. If you edit a file while in debug
mode, you can get unexpected results when you run the file. If you do edit
a file while in debug mode, breakpoints turn gray, indicating that results
might not be reliable. See “Understanding Valid (Red) and Invalid (Gray)
Breakpoints” on page 9-147 for details.

If you attempt to save an edited file while in debug mode, a dialog box opens
allowing you to exit debug mode and save the file.

To end debugging, click the Exit debug mode button , or select Exit Debug
Mode from the Debug menu.

You can instead use the function dbquit or the Shift+F5 keyboard shortcut
to end debugging.

After quitting debugging, pause indicators in the Editor display no longer
appear, and the normal prompt >> appears in the Command Window instead
of the debugging prompt, K>>. You can no longer access the call stack.

Disabling and Clearing Breakpoints
Disable a breakpoint to ignore it temporarily. Clear a breakpoint to remove it.

Disabling and Enabling Breakpoints. You can disable selected
breakpoints so the program temporarily ignores them and runs uninterrupted,
for example, after you think you identified and corrected a problem. This
is especially useful for conditional breakpoints—see “Using Conditional
Breakpoints” on page 9-166.

To disable a breakpoint, do one of the following:

• Right-click the breakpoint icon and select Disable Breakpoint from the
context menu.

• Click anywhere in a line and select Enable/Disable Breakpoint from
the Debug menu.

9-159



9 Editing and Debugging MATLAB® Code

To disable a conditional breakpoint, use either of the methods in the preceding
list or click the conditional breakpoint icon. An X appears through the
breakpoint icon as shown here.

When you run dbstatus, the resulting message for a disabled breakpoint is

Breakpoint on line 9 has conditional expression 'false'.

After disabling a breakpoint, you can reenable it to make it active again or
you can clear it.

To reenable a breakpoint, do either of the following:

• Right-click the breakpoint icon and select Enable Breakpoint from the
context menu.

• Click anywhere in a line and select Enable/Disable Breakpoint from
the Debug menu.

The X no longer appears on the breakpoint icon and program execution will
pause at that line.

Clearing (Removing) Breakpoints. All breakpoints remain in a file until
you clear (remove) them or until they are cleared automatically. Clear a
breakpoint after determining that a line of code is not causing a problem.

To clear a breakpoint in the Editor:

• Click anywhere in a line that has a breakpoint and select Set/Clear
Breakpoint from the Debug menu.

• Click a standard breakpoint icon, or a disabled conditional breakpoint icon.

• Use the dbclear in file at lineno command in the Command Window.
For the example, clear the breakpoint at line 9 in collatzplot by typing:

dbclear in collatzplot at 9

9-160



Debugging Process and Features

To clear all breakpoints in all files:

• Select Debug > Clear Breakpoints in All Files on the toolbar.

• Click the Clear breakpoints in all files button .

• Use dbclear all in the Command Window.

For the example, clear all of the breakpoints in collatzplot by typing:

dbclear all in collatzplot

Breakpoints clear automatically when you:

• End the MATLAB session.

• Clear the file using clear name or clear all.

Note When clear name or clear all is in a statement in a file that you are
debugging, it clears the breakpoints.

Saving Breakpoints
You can use the s=dbstatus syntax and then save s to save the current
breakpoints to a MAT-file. At a later time, you can load s and restore the
breakpoints using dbstop(s). For more information, including an example,
see the dbstatus reference page.

Correcting Problems in a MATLAB File
To correct a problem in a MATLAB file:

1 Quit debugging.

Do not modify a file while MATLAB is in debug mode. If you do, breakpoints
turn gray, indicating that results might not be reliable. See “Understanding
Valid (Red) and Invalid (Gray) Breakpoints” on page 9-147 for details.

2 Modify the file.

3 Save the file.

9-161



9 Editing and Debugging MATLAB® Code

4 Set, disable, or clear breakpoints, as appropriate.

5 Run the file again to be sure that it produces the expected results.

Completing the Example
To correct the problem in the example:

1 End the debugging session. One way to do this is to select Exit Debug
Mode from the Debug menu.

2 In collatzplot.m line 11, change the string plot_seq to seq_length(N)
and save the file.

3 Clear the breakpoints in collatzplot.m. One way to do this is by typing

dbclear all in collatzplot

in the Command Window.

4 Run collatzplot for m = 3 by typing

collatzplot(3)

in the Command Window.

5 Verify the result. The figure shows that the length of the Collatz series is 1
when n = 1, 2 when n = 2, and 8 when n = 3, as expected.

9-162



Debugging Process and Features

6 Test the function for a slightly larger value of m, such as 6, to be sure that
the results are still accurate. To make it easier to verify collatzplot for m
= 6 as well as the results for collatz, add this line at the end of collatz.m

sequence

which displays the series in the Command Window. The results for when
n = 6 are

sequence =

6 3 10 5 16 8 4 2 1

Then run collatzplot for m = 6 by typing

9-163



9 Editing and Debugging MATLAB® Code

collatzplot(6)

7 To make debugging easier, you ran collatzplot for a small value of m.
Now that you know it works correctly, run collatzplot for a larger value
to produce more interesting results. Before doing so, you consider disabling
output for the line you just added in step 6, line 19 of collatz.m, by adding
a semicolon to the end of the line so it appears as

sequence;

Then run

collatzplot(500)

9-164



Debugging Process and Features

The following figure shows the lengths of the Collatz series for n = 1
through n = 500.

Running Sections in MATLAB Files That Have Unsaved Changes
It is a good practice to modify a MATLAB file after you quit debugging,
and then save the modification and run the file. Otherwise, you might
get unexpected results. However, there are situations where you want to
experiment during debugging. Perhaps you want to modify a part of the file
that has not yet run, and then run the remainder of the file without saving
the change. Follow these steps:

1 While stopped at a breakpoint, modify a part of the file that has not yet run.

9-165



9 Editing and Debugging MATLAB® Code

Breakpoints turn gray, indicating they are invalid.

2 Select all of the code after the breakpoint, right-click, and then select
Evaluate Selection from the context menu.

You can also use cell mode to do this.

Using Conditional Breakpoints
Set conditional breakpoints to cause MATLAB to stop at a specified line in a
file only when the specified condition is met. One particularly good use for
conditional breakpoints is when you want to examine results after a certain
number of iterations in a loop. For example, set a breakpoint at line 10 in
collatzplot, specifying that MATLAB stop only if N is greater than or equal
to 2. This section covers the following topics:

• “Setting Conditional Breakpoints” on page 9-166

• “Modifying, Disabling, and Clearing Conditional Breakpoints” on page
9-167

• “Function Alternatives for Manipulating Conditional Breakpoints” on
page 9-168

Setting Conditional Breakpoints
To set a conditional breakpoint:

1 Click in the line where you want to set the conditional breakpoint.

2 From the Debug menu, select Set/Modify Conditional Breakpoint. If a
standard breakpoint exists at that line, use this same method to make it
conditional.

The MATLAB Editor conditional breakpoint dialog box opens as shown
in this example.

9-166



Debugging Process and Features

3 Type a condition in the dialog box, where a condition is any valid MATLAB
expression that returns a logical scalar value. Click OK. As noted in the
dialog box, the condition is evaluated before running the line. For the
example, at line 9 in collatzplot, enter the following as the condition:

N>=2

A yellow breakpoint icon (indicating the breakpoint is conditional) appears
in the breakpoint alley at that line.

����������
������������8!�

�"9

When you run the file, MATLAB software enters debug mode and pauses
at the line only when the condition is met. In the collatzplot example,
MATLAB runs through the for loop once and pauses on the second iteration
at line 9 when N is 2. If you continue executing, MATLAB pauses again at line
9 on the third iteration when N is 3.

Modifying, Disabling, and Clearing Conditional Breakpoints
The following table describes how to adjust conditional breakpoints.

9-167



9 Editing and Debugging MATLAB® Code

To Do This

Modify a condition for a
breakpoint in the current
line.

Right-click the conditional breakpoint icon,
and then from the context menu, select
Set/Modify Condition.

Disable a conditional
breakpoint.

Click the associated conditional breakpoint
icon.

Clear a conditional
breakpoint.

Double-click the associated conditional
breakpoint icon.

Function Alternatives for Manipulating Conditional Breakpoints
The following table lists the functions available for adjusting conditional
breakpoints from the Command Window.

To Use This Function

Set a conditional breakpoint. dbstop

Clear a conditional breakpoint. dbclear

View a list of currently set breakpoints,
including the conditional expression
for each conditional breakpoint.

dbstatus

Breakpoints in Anonymous Functions
You can set multiple breakpoints in a line of MATLAB code that contains
anonymous functions. You can do both of the following:

• Set a breakpoint for the line itself (MATLAB software stops at the start
of the line).

• Set a breakpoint for each anonymous function in that line.

When you add a breakpoint to a line containing an anonymous function, the
Editor asks where in the line you want to add the breakpoint. If there is more
than one breakpoint in a line, the breakpoint icon is blue , regardless of the
status of any of the breakpoints on the line.

9-168



Debugging Process and Features

To display information in a tooltip about all breakpoints on a line, position
the pointer on the blue icon.

To perform a breakpoint action for a line that can contain multiple
breakpoints, such as Clear Breakpoint, right-click the breakpoint alley at
that line, and then select the action.

When you set a breakpoint in an anonymous function, MATLAB stops when
the anonymous function is called.

The following illustration shows the Editor when you set a breakpoint in the
anonymous function sqr in line 2, and then run the file. MATLAB stops when
it runs sqr in line 4. After you continue execution, MATLAB stops again
when it runs sqr the second time in line 4. The Stack display shows the
anonymous function.

Breakpoint in 
anonymous 
function sqr.

MATLAB stops 
when it runs sqr.

Breakpoints in Methods That Overload Functions
MATLAB functions often call other MATLAB functions and methods to
perform their operations. If you set a breakpoint in a class method, and then
run a MATLAB function that results in calling that method, execution stops
at the breakpoint. This behavior can be confusing if you are unaware that the
MATLAB function calls the method containing the breakpoint.

For instance, suppose you do the following:

1 Define a class named MyClass that overloads the MATLAB size function.

9-169



9 Editing and Debugging MATLAB® Code

2 Create an instance of MyClass.

3 Insert breakpoints within the MyClass size method.

4 Call whos.

When you call the whos function, it calls the size function to obtain size
information about the variables in the workspace. Under the preceding
circumstances, because MyClass overloads the size function, whos calls the
MyClass size method instead of the default size function to determine
the size of the MyClass object. Execution stops at the breakpoint you set
in the size method. You can enable the MATLAB function to execute to
completion by either stepping or continuing through the method. To prevent
this behavior from recurring, remove the breakpoints.

Error Breakpoints
Set error breakpoints to stop program execution and enter debug mode
when MATLAB encounters a problem. Unlike standard and conditional
breakpoints, you do not set these breakpoints at a specific line in a specific
file. Rather, once set, MATLAB stops at any line in any file when the error
condition specified by using the error breakpoint occurs. MATLAB then
enters debug mode and opens the file containing the error, with the pause
indicator at the line containing the error. Files open only when you select
Debug > Open Files when Debugging. Error breakpoints remain in effect
until you clear them or until you end the MATLAB session. You can set error
breakpoints from the Debug menu in any desktop tool. This section covers
the following topics:

• “Setting and Clearing Error Breakpoints” on page 9-170

• “Error Breakpoint Types and Options” on page 9-171

• “Examples of Setting Warning and Error Breakpoints” on page 9-172

• “Function Alternative for Manipulating Error Breakpoints” on page 9-174

Setting and Clearing Error Breakpoints
To set error breakpoints:

1 Select Debug > Stop if Errors/Warnings.

9-170



Debugging Process and Features

2 In the Stop if Errors/Warnings for All Files dialog box, specify error
breakpoints on all appropriate tabs, and then click OK.

To clear error breakpoints, select the Never stop if ... option for all
appropriate tabs, and then click OK.

Error Breakpoint Types and Options
As the tabs in the Stop if Errors/Warnings for All Files dialog box suggest,
there are four basic types of error breakpoints you can set:

• Errors

When an error occurs, execution stops, unless the error is in a try...catch
block. MATLAB enters debug mode and opens the file to the line in the try
portion of the block that produced the error. You cannot resume execution.

• Try/Catch Errors

When an error occurs in a try...catch block, execution pauses. MATLAB
enters debug mode and opens the file to the line that produced the error.
You can resume execution or use debugging features.

9-171



9 Editing and Debugging MATLAB® Code

• Warnings

When a warning occurs, MATLAB pauses, enters debug mode, and opens
the file, paused at the line that produced the warning. You can resume
execution or use debugging features.

• NaN or Inf

When an operator, function call, or scalar assignment produces a NaN
(not-a-number) or Inf (infinite) value, MATLAB pauses, enters debug
mode, and opens the file. MATLAB pauses immediately after the line
that encountered the value. You can resume execution or use debugging
features.

Select options for these error breakpoints:

• Click Never stop if error... on a tab to clear that type of breakpoint.

• Click Always stop if error... on a tab to set that type of breakpoint.

• Select Use message identifiers... on a tab to limit each type of error
breakpoint (except NaN or Inf). Execution stops only for the error you
specify by the corresponding message identifier.

This option is not available for the NaN or Inf type of error breakpoint.
You can add multiple message identifiers, and edit or remove them.

Examples of Setting Warning and Error Breakpoints

Pausing Executing for Warnings. To pause execution when MATLAB
produces a warning:

1 Click the Warnings tab.

2 Click Always stop if warning, and then click OK.

Now, when you run a file and MATLAB produces a warning, execution pauses
and MATLAB enters debug mode. The file opens in the Editor at the line
that produced the warning.

Setting Breakpoints for a Specific Error. To stop execution for a specific
error add a message identifier:

9-172



Debugging Process and Features

1 Click the Errors, Try/Catch Errors, or Warnings tab.

2 Click Use Message Identifiers.

3 Click Add.

4 In the resulting Add Message Identifier dialog box, type the message
identifier of the error for which you want to stop. The identifier is of the form
component:message (for example, MATLAB:nargchk:notEnoughInputs).
Then click OK.

The message identifier you specified appears in the Stop if Errors/Warnings
for All Files dialog box.

5 Click OK.

Obtaining Error Message Identifiers. To obtain an error message
identifier generated by a MATLAB function, run the function to produce the
error, and then call MExeption.last. For example:

surf
MException.last

The Command Window displays the MException object, including the error
message identifier in the identifier field. For this example, it displays:

ans =

MException

Properties:
identifier: 'MATLAB:nargchk:notEnoughInputs'

message: 'Not enough input arguments.'
cause: {}
stack: [1x1 struct]

Methods

Obtaining Warning Message Identifiers. To obtain a warning message
identifier generated by a MATLAB function, run the function to produce the
warning. Then, run:

9-173



9 Editing and Debugging MATLAB® Code

[m,id] = lastwarn

MATLAB returns the last warning identifier to id. An example of a warning
message identifier is MATLAB:concatenation:integerInteraction.

Function Alternative for Manipulating Error Breakpoints
The function equivalent for each option in the Stop if Errors/Warnings for
All Files dialog box, appears to the right of each option. For example, the
function equivalent for Always stop if error is dbstop if error. Use these
functions in the Command Window as listed in the following table.

To Use This Function

Set error breakpoints. dbstop

Clear error breakpoints. dbclear

View a list of currently set breakpoints,
including the condition and message identifier
for each error breakpoint.

dbstatus

9-174



Evaluating Subsections of Files Using Code Cells

Evaluating Subsections of Files Using Code Cells

In this section...

“What Are Code Cells?” on page 9-175

“Scenarios for Evaluating Sections of Code” on page 9-176

“Process for Evaluating Sections of Files” on page 9-177

“Defining Code Cells” on page 9-178

“Understanding Nested Code Cells” on page 9-185

“Navigating Among Code Cells in a File” on page 9-193

“Evaluating Code Cells” on page 9-194

What Are Code Cells?
MATLAB files often have a natural structure consisting of multiple sections.
Especially for larger files, you typically focus efforts on a single section at a
time, working with the code in just that section. Similarly, when conveying
information about your files to others, often you describe the sections of the
code. To facilitate these processes, use code cells, where a code cell refers to a
section of code. A code cell contains the contiguous lines of code that you want
to evaluate as a whole in a MATLAB script. A code cell has boundaries to
define its start and end. Because code cell features operate on code cells, it is
important to understand how you define boundaries explicitly, how MATLAB
defines boundaries implicitly, and how implicitly and explicitly defined code
cell boundaries interact to create code cells, as described in “Defining Code
Cells” on page 9-178

Specifically, MATLAB software uses code cells for:

• Evaluating sections of code in the Editor — This makes the experimental
phase of your work with MATLAB scripts easier. This process is sometimes
referred to as rapid code iteration. “Scenarios for Evaluating Sections of
Code” on page 9-176 provides some situations where this process is useful.
Additional sections provide an overview of the process and details for
defining, evaluating, and modifying values in code cells.

9-175



9 Editing and Debugging MATLAB® Code

• Publishing MATLAB files — This enables you to include code and results
in a presentation format such as HTML. Publishing using code cells
also requires you to define cells. You can use the cell navigation and
evaluation you specify for running sections of code or define and use code
cells explicitly for publishing. See Chapter 11, “Publishing MATLAB Code”
for complete details.

Scenarios for Evaluating Sections of Code
When working with a MATLAB file, you often experiment with your
code—modifying it, testing it, and updating it—until you have a file that
does what you want. For example:

• Suppose you have code that plots data. You might break the code into
two code cells: the code in the first cell creates the basic results, while
the code in the second cell labels the plot. The two code cells enable you
to experiment with the plot of the data first, and then when that is final,
change the plot properties to affect the style of presentation. This scenario
is presented in “Example of Evaluating Code Cells” on page 9-198.

• Suppose you have an two images that you want to add, and then display
the results. As part of this algorithm, you want to adjust the brightness of
the second image before adding it to the first image. You can read in those
images, tweak the second image’s brightness, read it in again, adjust its
brightness, and so on using the cell mode toolbar buttons until you see the
brightness you want. There is no need to save the file between adjustments.
If you have an active Internet connection, you can watch the Rapid Code
Iteration Using Cells video demo that illustrates this example and more.

Use the MATLAB code cell features with MATLAB scripts to facilitate this
process. You also can use code cell features with MATLAB function files, but
there are some restrictions—see “Using Code Cells in MATLAB Function
Files” on page 9-196.

Note Cell mode is supported for use with MATLAB code files (.m files) only.
It is not for use with plain text files. When used with plain text files, results
are unpredictable.

9-176



Evaluating Subsections of Files Using Code Cells

Process for Evaluating Sections of Files
This is the overall process of using code cells to evaluate sections of code:

1 In the MATLAB Editor, select Cell > Enable Cell Mode. Items in the
Cell menu become selectable. The cell toolbar appears, unless you had
previously hidden it. With cell mode enabled, hide or show the toolbar
by right-clicking in the Editor menu bar or toolbars and selecting Cell
Toolbar from the context menu.

2 Define the boundaries of the cells in a MATLAB script using cell features.
Code cells are denoted by a specialized comment syntax, %%. For details,
see “Defining Code Cells” on page 9-178.

3 After you define the code cells, use cell features. Cell features enable you to
navigate quickly from cell to cell in your file, evaluate the code in a cell in
the base workspace, and view the results. To facilitate experimentation,
use cell features to modify values in cells, and then reevaluate them to see
how different values affect the result. For details, see “Evaluating Code
Cells” on page 9-194.

��

�����
���
���

�	������%�


��
������

 ��������


�������"���
%����%�

�

9-177



9 Editing and Debugging MATLAB® Code

Defining Code Cells
You define code cell boundaries explicitly by inserting a line that begins with
a cell break (also referred to as a cell divider), which is two percent sign
characters (%%). White space can precede these two characters, and text can
follow them, if there is white space between the %% characters and the text.
For details, see “Defining Code Cell Boundaries Explicitly” on page 9-179.

MATLAB defines implicit cell boundaries in a code block only when you
specify one or more explicit cell breaks within that code block. MATLAB
defines implicit cell breaks as follows:

• MATLAB defines implicit cell breaks at the top and bottom of the file, to
create an implicit cell that contains the entire file. However, the Editor
does not highlight the resulting cell, which encloses the entire file, unless
you add one or more explicit cell breaks to the file.

• If you define an explicit cell break in a function, MATLAB defines implicit
cell breaks at the function declaration and at the function end statement.

The resulting cells are nested within the full file cell. If you do not end the
function with an explicit end statement, MATLAB behaves as though the
end of the function occurs immediately before the start of the next function.

• If you define an explicit cell break within a language construct (such as an
if or while statement), MATLAB defines implicit cell breaks at the lines
containing the start and end of the language construct.

The resulting cells are nested within the full file cell, and the function in
which the code block occurs, if any.

If an implicit cell break and an explicit cell break occur on the same line, they
collapse into one explicit cell break. For more information on nested cells, see
“Understanding Nested Code Cells” on page 9-185.

This section includes the following topics:

• “Defining Code Cell Boundaries Explicitly” on page 9-179

• “Creating Titles for Code Cells” on page 9-180

• “Highlighting Code Cells” on page 9-180

• “Example of Defining Code Cells” on page 9-181

9-178



Evaluating Subsections of Files Using Code Cells

• “Fixing Code Cell Highlighting Problems” on page 9-182

• “Removing Code Cells” on page 9-184

• “Summary of Cell Mode and Code Cell Requirements” on page 9-184

Defining Code Cell Boundaries Explicitly
To define code cell boundaries explicitly, insert cell breaks:

1 Ensure that cell mode is enabled. (See “Scenarios for Evaluating Sections
of Code” on page 9-176.)

2 Optionally, to help you distinguish cells from each other, do one or both
of the following:

• Include a faint gray horizontal line (rule) above each cell to help you
distinguish the cells from each other.

Select File > Preferences > Colors > Programming Tools, and then
in Cell display options, select Show lines between cells.

The horizontal lines do not appear in the file when you print it.

• Set a color to indicate the current cell.

Select File > Preferences > Colors > Programming Tools. Then, in
Cell display options, select Highlight cells, and then select the color
that you want. By default, MATLAB highlights the current cell in yellow.

The current cell is the cell where you have placed the cursor. Like the
lines between cells, highlighting helps you distinguish the cells from
each other.

3 Do one of the following to insert the cell breaks:

• Position the cursor just before the line at which you want to start the cell
and select Cell > Insert Cell Break .

• Click the Insert cell break button .

• Enter two percent signs (%%) at the start of the line where you want to
begin the new cell.

• Select the lines of code you want in a cell, and then select Cell > Insert
Cell Breaks Around Selection.

9-179



9 Editing and Debugging MATLAB® Code

Note Program control statements, such as if ... end, must be contained
within a single cell. You cannot insert a cell break between the if and the
end statements.

You can define a cell at the start of a new empty file, enter code for the cell,
define the start of the next cell, enter its code, and so on. Redefine cells by
defining new cells, removing existing cell boundaries, and moving lines of code.

Creating Titles for Code Cells
The Editor emphasizes the special meaning of the start of a cell by making
any text following the percent signs appear bold. The text on the %% line
is called the cell title. Including text in cell titles is optional, however, it
improves the readability of the file and is used for cell publishing features.

To create a cell title, after the %% characters that specify a cell break, type a
space, followed by a description of the cell.

Highlighting Code Cells
When the cursor is positioned in any line within a cell, the Editor highlights
the entire cell that contains that line with a yellow background, by default.
This identifies it as the current cell. The current cell is used, for example,
when you select the Evaluate Current Cell option from the Cell menu.

Turning Off Code Cell Highlighting.

1 Select File > Preferences > Colors > Programming Tools.

2 Under Cell display options, clear Highlight cells.

Setting a Color for Code Cell Highlighting.

1 Select File > Preferences > Colors > Programming Tools.

2 Under Cell display options, select Highlight cells.

3 Click the down arrow next to the color block beside Highlight cells, and
then select the color with which you want to highlight cells.

9-180



Evaluating Subsections of Files Using Code Cells

Example of Defining Code Cells
This example defines two cells for a file called sine_wave.m, shown in
the figure that follows. To open this code in your Editor, run the following
command and then save the file to a local folder:

edit(fullfile(matlabroot,'help','techdoc',...
'matlab_env','examples','sine_wave.m'))

The steps that follow insert a cell break into the code to create two cells. The
code in the first cell creates the basic results, while the second labels the
plot. The two cells enable you to experiment with the plot of the data first,
and then when that is final, change the plot properties to affect the style
of presentation.

1 Select Cell > Enable Cell Mode.

When cell mode is enabled, the Cell menu displays Disable Cell Mode.

2 Select File > Preferences > Colors > Programming Tools, and then
select Highlight cells and Show lines between cells.

3 Position the cursor at the start of the first line. Select Cell > Insert Cell
Break.

The Editor inserts a cell break %% as the first line and moves the rest of
the file down one line. All lines appear highlighted in yellow, indicating
that the entire file is a single cell, assuming that you have that display
preference for cells selected.

4 After the cell break, type a space, and then enter a cell title.

%% Calculate and Plot Sine Wave

5 Position the cursor at the start of line 7, title..., and then select
Cell > Insert Cell Break.

The Editor inserts a line containing only a cell break (%%) at line 7 and
moves the remaining lines down one line. A horizontal line that helps you
distinguish the two cells appears above the cell break line. Lines 7 through
12 appear highlighted in yellow, indicating they comprise the current cell.

9-181



9 Editing and Debugging MATLAB® Code

6 On line 7, type a space after the %%, and then enter a cell title for the new
cell.

%% Modify Plot Properties

Save the file. The file appears as shown in this figure.

Fixing Code Cell Highlighting Problems
If you introduce an error into a file, such as a syntax error, cell highlighting
and dividers might not appear as you expect. Although dividers and
highlighting for existing cells remain in place, cells you insert after you have
introduced the syntax error do not appear highlighted. In addition, if you
close and reopen the file, then all cell dividers are gone and none of the cells
appears highlighted.

9-182



Evaluating Subsections of Files Using Code Cells

For example, suppose your code currently appears as specified in the
“Example of Defining Code Cells” on page 9-181. Make sure that automatic
code analysis is enabled by selecting File > Preferences > Code Analyzer,
and then selecting Enable integrated warning and error messages.

If you accidentally insert a syntax error (a closing bracket at the end of line
6), then the error is evident by a message marker. The cell highlighting
remains as is.

������

However, if you attempt to introduce a new cell at line 7, an extra cell divider
line appears between lines 5 and 6.

9-183



9 Editing and Debugging MATLAB® Code

To fix the problem, correct the syntax error. The extraneous cell divider
disappears.

Removing Code Cells
To remove a code cell, do one of the following:

• Delete one of the percent signs (%) from the line that starts the cell.

This changes the line from a cell break to a standard comment.

• Delete the entire line that contains the %% characters.

In both cases, because you remove the cell break, MATLAB merges the two
cells that were previously separated by the cell break.

Summary of Cell Mode and Code Cell Requirements
The following list summarizes facts to keep in mind when using cell mode
and defining cells:

• Cell mode is supported for use with MATLAB code files (.m files) only. It
is not for use with plain text files.

9-184



Evaluating Subsections of Files Using Code Cells

• MATLAB does not execute the code in lines beginning with cell break
characters, %%.

• MATLAB considers the entire file to be a single cell; therefore, the first line
in a file does not have to begin with %%.

• For program control statements, such as if ... end, a cell must contain
both the opening and closing statements, that is, it must contain both the
if and the end statements.

• You can set preferences for cell display options by selecting Select
File > Preferences > Colors > Programming Tools, and then making
choices for Cell Display options.

• If code analysis finds errors in a file, cell dividers and highlighting might
not appear as you expect. For details, see “Fixing Code Cell Highlighting
Problems” on page 9-182.

For more information, see “Preventing and Identifying Coding Problems” on
page 9-107.

Understanding Nested Code Cells
You can insert cells within nested code, which results in nested cells. The
following sections illustrate how inserting explicit cell breaks interacts with
the implicit cell breaks that MATLAB inserts within a file:

• “File Without Explicit Code Cell Breaks” on page 9-185

• “How Nesting Code Cell Breaks Result in Cells” on page 9-186

• “Example File with Nested Code Cell Breaks” on page 9-187

• “Associating Code Cell Breaks with Subfunctions” on page 9-191

File Without Explicit Code Cell Breaks
The following code when viewed in the Editor displays no cells or highlighting.
It is a single, implicit code cell, defined by MATLAB.

function fourier
t = 0:.1:pi*4;
y = sin(t);
updatePlot(1,t,y);

9-185



9 Editing and Debugging MATLAB® Code

for k = 3:2:9
y = y + sin(k*t)/k;
display(sprintf('When k = %.1f',k));

end
end

function updatePlot(k,t,x)
cla
plot(t,x)

end

To follow this example, save the code to a local folder with the file name
fourier.m.

How Nesting Code Cell Breaks Result in Cells
Suppose you insert two cell breaks into fourier.m as follows:

1 One within the fourier function, at line 5.

2 One within the for loop, at line 8

This results in the following cells, which are illustrated in “Example File with
Nested Code Cell Breaks” on page 9-187:

• One cell at the outermost level, from the top to the bottom of the file.

• Two cells at the second level, within the fourier function:

- One from the implicit break at line 2 to the explicit break at line 5.

- One from the explicit break at line 5 to the implicit break before line 11
(end of the function).

• One cell at the third level, within the for loop from the explicit line break
at line 7 to the implicit line break before line 10.

9-186



Evaluating Subsections of Files Using Code Cells

Example File with Nested Code Cell Breaks
The following images illustrate how inserting explicit cell breaks, as described
in “How Nesting Code Cell Breaks Result in Cells” on page 9-186, affect the
appearance of the file:

• First level of nesting — When you place the cursor outside a function,
at the outermost level, the entire file appears highlighted, showing that it
comprises a cell at this level of nesting.

Cursor at 
outermost
level

MATLAB only defines implicit cell breaks in a code block if you specify
an explicit cell break within that code block. Therefore, because function
updatePlot in this example has no explicit (and therefore, no implicit)
cell breaks defined for it, when you place the cursor within that function,
MATLAB considers the cursor to be within the cell that encloses the whole
file.

9-187



9 Editing and Debugging MATLAB® Code

Cursor in function
with no explicit, 
and therefore no
implicit cells
defined

• Second level of nesting—When you place the cursor within the function
(but outside the for loop), either the first or second cell at this level of
nesting appears highlighted, depending on where the cursor is located.

9-188



Evaluating Subsections of Files Using Code Cells

First cell 
within function

9-189



9 Editing and Debugging MATLAB® Code

Second cell
within function

• Third level of nesting—When you place the cursor within the for loop,
the cell within this loop is highlighted.

9-190



Evaluating Subsections of Files Using Code Cells

Cell within
for loop

Associating Code Cell Breaks with Subfunctions
If you want a cell break to be associated with a subfunction, place the cell
break within the subfunction, rather than above the subfunction declaration.
Otherwise, the cell break creates a single cell within the code block that
precedes the subfunction. The following two images demonstrate this using
collatzall.m.

9-191



9 Editing and Debugging MATLAB® Code

9-192



Evaluating Subsections of Files Using Code Cells

Navigating Among Code Cells in a File
You can navigate among cells in a file without evaluating the code within
those cells, as described in the table that follows. This can be useful when

9-193



9 Editing and Debugging MATLAB® Code

you want to jump quickly from cell to cell within a file. You might do this,
for example, to find the point at which you want to begin cell evaluation.
By default, the cell mode navigation buttons are not on the Editor Cell
Mode toolbar. For information on how to add them, see “Setting Toolbars
Preferences for Desktop Tools” on page 2-156 .

Operation Instructions

Move to the next cell. Select Cell > Next Cell or click the Next Cell
button .

Move to the previous
cell.

Select Cell > Previous Cell or click the Previous
Cell button .

Move to a specific
cell.

Do either of the following:

• Use the Editor Cell Mode toolbar:

1 Click the Show cell titles button .

2 Select the cell title to which you want to move.

• Use the Go menu:

1 Select Go > Go To.

The Go To dialog box opens.

2 Select Function or cell title.

3 Select the cell title to which you want to move.

4 Click OK.

Evaluating Code Cells
As you develop a MATLAB file, you can use the Editor cell features to evaluate
the file cell-by-cell. This method helps you to experiment with, debug, and
fine-tune your code. You can navigate from cell to cell, and evaluate each cell
individually. See the following topics for details:

• “Evaluating Code Cells in a File” on page 9-195

• “Processing Considerations When Evaluating Code Cells” on page 9-196

9-194



Evaluating Subsections of Files Using Code Cells

• “Modifying Values in a Code Cell” on page 9-197

• “Example of Evaluating Code Cells” on page 9-198

Evaluating Code Cells in a File
The cell evaluation features run the cell code currently shown in the Editor,
even if the file contains unsaved changes. The file does not have to be on the
search path. To evaluate a cell, it must contain all the values it requires, or
the values must exist in the MATLAB workspace.

To run the code in a cell, use the Cell menu evaluation items or equivalent
buttons in the cell mode toolbar. When you evaluate a cell, the results display
in the Command Window, figure window, or elsewhere, depending on the
code evaluated.

The following table provides instructions on evaluating code cells.

Operation Instructions

Run the code in the
current cell.

Select Cell > Evaluate Current Cell or click the
Evaluate cell button .

Run the code in the
current cell, and then
move to the next cell.

Select Cell > Evaluate Current Cell and
Advance or click the Evaluate cell and advance
button .

Run all the code in
the file.

Select Cell > Evaluate Entire File or click the
Evaluate entire file button . By default, the
Evaluate entire file button is not on the Editor Cell
Mode toolbar. See “Setting Toolbars Preferences for
Desktop Tools” on page 2-156 for information on
how to add it.

Note A beep indicates there is an error. See the
Command Window for the error message.

9-195



9 Editing and Debugging MATLAB® Code

Processing Considerations When Evaluating Code Cells
This section describes processing considerations to take into account when
you evaluate code cells in MATLAB files.

Setting Breakpoints. While you can set breakpoints and debug a file
containing cells, when you evaluate a file from the Cell menu or cell toolbar,
breakpoints are ignored. To run the file and stop at breakpoints, use
Run/Continue in the Debug menu. This means you cannot debug while
running a single cell.

Using Code Cells in MATLAB Function Files. You can define and evaluate
cells in MATLAB function files as long as the variables referenced in the code
cell are in your workspace. This can be useful during debugging. If execution
is stopped at a breakpoint, you can define cells and execute them without
saving the file. If you are not debugging, add the necessary variables to the
base workspace, and then execute the cells.

Using Function Names as Variable Names in Code Cells. If you use a
MATLAB function name as a variable name within a cell, you might receive
an unexpected error when you evaluate the cell. The precedence rules that
MATLAB typically follows do not apply when it evaluates a cell. Typically,
MATLAB evaluates variables before functions. However, when you evaluate
cells, MATLAB parses all the cell code and loads it into memory before
evaluating it. Therefore, functions might be evaluated before variables under
some circumstances, as illustrated by the following example.

Suppose you create a MAT-file, mydata.mat, using the following commands:

clear all
info=5;
save mydata.mat
clear all

When you enter the following commands in the Command Window, b
evaluates to 5, as expected:

load mydata
b=info

9-196



Evaluating Subsections of Files Using Code Cells

However, when you evaluate the same commands in a code cell, b evaluates
to the MATLAB info function, thus the Command Window displays the
following error:

??? Error using ==> info
Too many output arguments.

For this reason, consider avoiding using function names as variable names
within code cells.

Modifying Values in a Code Cell
You can use code cell features to modify numbers in a cell, which also
automatically reevaluates the cell. This helps you experiment with and
fine-tunes your code.

To modify a number in a cell, select the number (or place the cursor near
it) and use the value modification tool in the cell toolbar. Using this tool,
you can specify a number and press the appropriate math operator to add
(increment), subtract (decrement), multiply, or divide the number. The cell
then automatically reevaluates.

Decrement/increment number

Decrement and
increment buttons

Divide/multiply number

Divide and
multiply buttons

You can use the numeric keypad operator keys (-, +, /, and *) instead of the
operator buttons on the toolbar.

9-197



9 Editing and Debugging MATLAB® Code

Note MATLAB software does not automatically save changes you make to
values using the cell toolbar. To save changes, select File > Save.

Example of Evaluating Code Cells
In this example, modify the values for x in sine_wave.m:

1 Run the first cell in sine_wav.m. Click somewhere in the first cell, that
is, between lines 1 and 6. Select Cell > Evaluate Current Cell. The
following figure appears.

9-198



Evaluating Subsections of Files Using Code Cells

Plot generated by running sine_wave.m.

2 Assume that you want to produce a smoother curve. Use more values for
x in 0:1:6*pi. Position the cursor in line 4, next to the 1. In the cell
toolbar, change the 1.1 default multiply/divide by value to 2. Click the
Divide button .

Line 4 becomes

9-199



9 Editing and Debugging MATLAB® Code

and the length of x doubles. The plot automatically updates. The curve
still has some rough edges.

3 To add more values for x, click the Divide button three more times. Line 4
becomes

The curve is smooth, but because there are more values, processing time is
slower. It would be better to find a smaller x that still produces a smooth
curve.

4 In the cell toolbar, click the Multiply button once. The increment for x as
shown in line 4 changes from 0.0625 to 0.125.

The resulting curve is still smooth.

5 Save these changes. Select File > Save.

6 Now you can apply the plot properties, defined in the second cell, that is,
lines 7 through 12. You do not need to evaluate the entire file to apply the
plot properties. Instead, position the cursor in the second cell and select
Cell > Evaluate Current Cell to evaluate the current cell.

9-200



Evaluating Subsections of Files Using Code Cells

MATLAB updates the figure.

9-201



9 Editing and Debugging MATLAB® Code

Debugging Functions
• dbstop—Set breakpoints

• dbclear—Clear breakpoints

• dbcont—Resume execution

• dbdown—Reverse workspace shift performed by dbup, while in debug mode

• dbmex—Enable MEX-file debugging (on UNIX platforms)

• dbstack—Function call stack

• dbstatus—List breakpoints

• dbstep—Execute one or more lines from current breakpoint

• dbtype—List text file with line numbers

• dbup—Shift current workspace to workspace of caller, while in debug mode

• dbquit—Quit debug mode

9-202



10

Tuning and Managing
MATLAB Code Files

This set of tools provides useful information about the MATLAB code files in
a folder that can help you refine the files and improve performance. The tools
can help you polish these files before providing them to others to use.

• “Using MATLAB Reports” on page 10-2

• “Using the Code Analyzer Report” on page 10-22

• “Profiling for Improving Performance” on page 10-27



10 Tuning and Managing MATLAB® Code Files

Using MATLAB Reports

In this section...

“Refining and Improving Files Using Reports” on page 10-2

“Identifying Files with Reminder Annotations” on page 10-4

“Generating a Summary View of the Help Components in Functions and
Scripts” on page 10-8

“Displaying and Updating a Report on the Contents of a Folder” on page
10-11

“Displaying Dependencies Among MATLAB Code Files” on page 10-15

“Identifying How Much of a File Ran When Profiled” on page 10-20

See also “Using the Code Analyzer Report” on page 10-22 the Comparison Tool.

Refining and Improving Files Using Reports
Reports help you refine MATLAB code files within a given folder and improve
their performance. They are also useful for checking the quality of files
before you distribute them for use by others, to share on MATLAB Central,
or for a toolbox. (A toolbox is a collection of files for use with MATLAB and
related products.)

See also “Using the Code Analyzer Report” on page 10-22.

Accessing Reports
To access reports from the MATLAB Current Folder browser:

1 Select Desktop > Current Folder or click the Current Folder browser.

2 Navigate to the folder containing the files for which you want to produce
reports.

3 On the Current Folder browser toolbar, click the Actions button , and
then select the type of report you want to run.

The report runs for all the MATLAB code files in the current folder.

10-2

http://www.mathworks.com/matlabcentral/


Using MATLAB® Reports

The report you select appears as an HTML document in the MATLAB Web
Browser.

Note You cannot run reports when the path is a UNC (Universal Naming
Convention) path, that is, starts with \\. Instead, use an actual hard drive on
your system, or a mapped network drive.

Using Reports
All MATLAB reports contain various links that enable you to access additional
information, as described in the table that follows:

To Do this

Open a file in the Editor to view it or
modify it.

Click a file name in the report.

Open a file at the line listed in a report. Click the line number.

Update a report after modifying report
options.

Click Rerun This Report.

10-3



10 Tuning and Managing MATLAB® Code Files

To Do this

Update a report after changing any
files in the folder.

Click Rerun This Report.

Generate the same type of report for
a different folder. 1 Keep the current report open.

2 Change the MATLAB current
folder.

3 Click Run Report on Current
Folder.

Note Clicking Rerun This Report reruns the report for the folder shown
in the report, not for the MATLAB current folder.

Identifying Files with Reminder Annotations
The TODO/FIXME Report identifies all the MATLAB code files within a given
folder that you have annotated. You annotate a file by adding comments with
the text TODO, FIXME, or a string of your choosing. Annotating a file makes
it easier to find areas of your code that you intend to improve, complete, or
update later. The TODO/FIXME Report presents a list of files containing
the annotations in a Web browser.

This sample TODO/FIXME Report shows files containing the strings TODO,
FIXME, and NOTE. The search is case insensitive.

10-4



Using MATLAB® Reports

��������!���1�
�����������������
��

�
�%�����
���
�	����������������
��
���������
������
���������#����!�	
%��������%������

Working with TODO/FIXME Reports

1 Select Desktop > Current Folder and navigate to the folder containing
the files for which you want to produce a TODO/FIXME report.

10-5



10 Tuning and Managing MATLAB® Code Files

2 On the Current Folder browser toolbar, click the Actions button , and
then select Reports > TODO/FIXME Report.

The TODO/FIXME Report opens in the MATLAB Web Browser.

3 In the TODO/FIXME Report window, select one or more of the following to
specify the lines that you want the report to include:

• TODO

• FIXME

• The text field check box

You can then enter any text string in this field, including a regular
expression. For example, you can enter NOTE, tbd, or re.*check.

4 Run the report on the files in the current folder, by clicking Rerun This
Report.

The window refreshes and lists all lines in the MATLAB files within the
specified folder that contain the strings you selected in step 1. Matches
are not case sensitive.

If you want to run the report on a folder other than the one currently
specified in the report window, change the current folder. Then, click Run
Report on Current Folder.

To open a file in the Editor at a specific line, click the line number in the
report. Then you can change the file, as needed.

Suppose you have a file, area.m, in the current folder. The code for area.m
appears in the image that follows.

10-6



Using MATLAB® Reports

When you run the TODO/FIXME report on the folder containing area.m,
with the TODO and FIXME strings selected and the string NOTE specified and
selected, the report lists:

9 and rectangle. (todo)
14 Fixme: Is the area of hemisphere as below?
17 fIXME
21 NOTE: Find out from the manager if we need to include

10-7



10 Tuning and Managing MATLAB® Code Files

Notice the report includes the following:

• Line 9 as a match for the TODO string. The report includes lines that have a
selected string regardless of its placement within a comment.

• Lines 14 and 17 as a match for the FIXME string. The report matches
selected strings in the file regardless of their casing.

• Line 21 as a match for the NOTE string. The report includes lines that have
a string specified in the text field, assuming that you select the text field.

Generating a Summary View of the Help Components
in Functions and Scripts
A Help Report presents a summary view of the help component of your
MATLAB files. Use this information to assist you in identifying files of
interest or files that lack a help component. It is a good practice to provide
help for your files not only to assist you in recalling their purpose, but to
assist others who use the files.

In MATLAB, the help component is all contiguous nonexecutable lines
(comment lines and blank lines), starting with the second line of a function
file or the first line of a script file. For more information about creating help
for your files, see the reference page for the help function.

Working with Help Reports

1 Select Desktop > Current Folder and navigate to the folder containing
the MATLAB files for which you want to produce a Help Report.

2 On the Current Folder browser toolbar, click the Actions button , and
then select Reports > Help Report.

10-8



Using MATLAB® Reports

The Help report opens in the MATLAB Web Browser.

3 Select one or more options, described in the following list, to have the Help
Report display the specified help information:

• Show class methods to have the Help Report display help information
for class methods created using the classdef keyword as well as
functions.

• Description to have the Help Report display the first line of help in
the file. If the first comment line is empty, or if there is not a comment
before the executable code, then No description line, highlighted in
pink, appears instead.

• Examples have the Help Report display the line number where the
examples section of the help begins. The Help Report looks for a line in
the help that begins with the string example or Example and displays
any subsequent nonblank comment lines. Select this option to easily
locate and go to examples in your files.

It is a good practice to include examples in the help for your MATLAB
code files. If you do not have examples in the help for all program files,
use this option to identify those without examples. If the report does not
find examples in the MATLAB code file help, No example, highlighted
in pink, appears.

• Show all help have the Help Report display complete MATLAB code
file help, which is all contiguous nonexecutable lines (comment lines and
blank lines), starting with the second line of a function file, or the first
line of a script file. The help displayed also includes overloaded functions
and methods, which are not actually part of the help comments, but are
automatically generated when help runs. Description lines are reported
twice if you also have also selected Description.

If the comment lines before the executable code are empty, or if there
are no comments before the executable code, No help, highlighted in
pink, appears instead.

• See Also have the Help Report display the line number for the see also
line in the help. The see also line in help lists related functions. When
the MATLAB Command Window displays the help for a MATLAB code
file, any function name listed on the see also line appears as a link you
can click to display its help. It is a good practice to include a see also
line in the help for your files.

10-9



10 Tuning and Managing MATLAB® Code Files

The report looks for a line in the help that begins with the string
See also. If the report does not find a see also line in the help, No
see-also line, highlighted in pink, appears. This helps you identify
those files without a see also line, should you want to include one in
each MATLAB code file.

The report also indicates when a file noted in the See also line is not in
a folder on the search path. You might want to move that file to a folder
that is on the search path. If not, you will not be able to click the link to
get help for the file, unless you then add its folder to the path or make its
folder become the current folder.

• Copyright have the Help Report display the line number for the
copyright line in the file. The report looks for a comment line in the file
that begins with the string Copyright and is followed by year1-year2
(with no spaces between the years and the hyphen that separates them).

It is a good practice to include a copyright line in the help that notes the
year you created the file and the current year. For example, for a file you
created in 2001, include this line

% Copyright 2001-2008

If the report:

– Does not find a copyright line in the help, No copyright line,
highlighted in pink, appears.

– Finds that the end of the date range is not the current year,
Copyright year is not current, highlighted in pink, appears.

4 Click Rerun This Report. Your report resembles the following image.

10-10



Using MATLAB® Reports

Displaying and Updating a Report on the Contents
of a Folder
The Contents Report displays information about the integrity of the
Contents.m file for a given folder. A Contents.m file includes the file name
and a brief description of each MATLAB code file in the folder. The Contents
Report helps you to maintain the Contents.m file. It displays discrepancies
between the Contents.m file and the MATLAB code files in the folder.

When you type help followed by the folder name, such as help mydemos, The
MATLAB Command window displays the information contained within the

10-11



10 Tuning and Managing MATLAB® Code Files

mydemos/Contents.m file. For more information, see “Providing Help for Your
Program” in the MATLAB Programming documentation.

Working with Contents Reports

1 Select Desktop > Current Folder and navigate to the folder containing
the files for which you want to produce a Contents report.

2 On the Current Folder browser toolbar, click the Actions button , and
then select Reports > Contents Report.

The Contents Report opens in the MATLAB Web browser. If there is no
Contents.m file for the folder, the report tells you the Contents.m file does
not exist and asks if you want to create one. Click yes to automatically
create the Contents.m file. You can edit the Contents.m file in the Editor
to include the names of files you plan to create, or to remove entries for files
that you do not want to expose when displaying help for the folder, such as
code intended for internal use only.

3 Update the Contents.m file to reflect changes you make to files in the
folder. For example, when you remove a file from a folder, remove its entry
from the Contents.m file.

Choose from the following options to updating the contents:

• edit Contents.m— Opens the Contents.m file in the Editor.

• fix spacing—Automatically align the file names and descriptions in
the Contents.m file.

• fix all makes all of the suggested changes at once.

• To make changes on a case-by-case basis, read each question in the
Contents Report, and then click yes if you want to make the suggested
change.

10-12



Using MATLAB® Reports

10-13



10 Tuning and Managing MATLAB® Code Files

Messages in the Contents File Report

No Contents File. This message appears if there is no Contents.m file in the
folder. Click yes to automatically create a Contents.m file, which contains
the file names and descriptions for all MATLAB code files in the folder.

No Contents.m file. Make one? [ yes ]

File Not Found. This message appears when a file included in Contents.m
is not in the folder. These messages are highlighted in pink. For example, a
message such as

File helloworld does not appear in this folder.
Remove it from Contents.m? [ yes ]

means the Contents.m file includes an entry for helloworld, but that file is
not in the folder. This might be because:

• You removed the file helloworld.

• You manually added helloworld to Contents.m because you planned to
create the file, but have not as yet.

• You renamed helloworld.

Description Lines Do Not Match. This message appears when the
description line in the file’s help does not match the description provided for
the file in Contents.m. These messages are highlighted in pink. Click yes to
replace the description in the Contents.m file with the description from the
file. Or select the option to replace the description line in the help using the
description for that file in Contents.m.

Description lines do not match for file logo5.
Use this description from the file? (default) [ yes ]
logo5 - This is the basic logo image for MATLAB 7

Or put this description from the Contents into the file? [ yes ]
logo5 - This is the basic logo image for MATLAB

Files Not In Contents.m. This message appears when a file in the folder is
not in Contents.m. These messages are highlighted in gray. Click yes to add
the file name and its description line from the file help to the Contents.m file.

10-14



Using MATLAB® Reports

collatzall is in the folder but not Contents.m
collatzall - Plot length of sequence for Collatz problem

Add the line shown above? [ yes ]

Creating a New Contents.m File to Reflect All Files in the
Current Folder
If you always want the Contents.m file to reflect all files in the current folder,
you can automatically generate a new Contents.m file rather than changing
the file based on the Contents Report, as follows:

1 Delete the existing Contents.m file.

2 Run the Contents Report.

3 Click yes when prompted for MATLAB to automatically create a Contents
Report.

Displaying Dependencies Among MATLAB Code Files
The Dependency Report shows dependencies among MATLAB code files in a
folder. Use this report to determine:

• Which files in the folder are required by other files in the folder

• If any files in the current folder will fail if you delete a file

• If any called files are missing from the current folder

The report does not list:

• Files in the toolbox/matlab folder because every MATLAB user has those
files.

Therefore, if you use a function file that shadows a built-in function file,
MATLAB excludes both files from the list.

• Files called from anonymous functions.

• The superclass for a class file.

• Files called from eval, evalc, run, load, function handles, and callbacks.

10-15



10 Tuning and Managing MATLAB® Code Files

MATLAB does not resolve these files until run time, and therefore the
Dependency Report cannot discover them.

• Some method files.

The Dependency Report finds class constructors that you call in a MATLAB
file. However, any methods you execute on the resulting object are
unknown to the report. These methods can exist in the classdef file, as
separate method files, or files belonging to superclass or superclasses of a
method file.

To provide meaningful results, the Dependency Report requires the following:

• The search path when you run the report is the same as when you run the
files in the folder. (That is, the current folder is at the top of the search
path.)

• The files in the folder for which you are running the report do not change
the search path or otherwise manipulate it.

• The files in the folder do not load variables, or otherwise create name
clashes that result in different program elements with the same name.

Note Do not use the Dependency Report to determine which MATLAB code
files someone else needs to run a particular file. Instead use the depfun
function.

Creating Dependency Reports

1 Select Desktop > Current Folder and navigate to the folder containing
the files for which you want to produce a Dependency Report.

2 On the Current Folder browser toolbar, click the Actions button , and
then select Reports > Dependency Report.

The Dependency Report opens in the MATLAB Web Browser.

3 If you want, select one or more options within the report, as follows:

10-16



Using MATLAB® Reports

• To see a list of all MATLAB code files (children) called by each file in the
folder (parent), select Show child functions.

The report indicates where each child function resides, for example, in
a specified toolbox. If the report specifies that the location of a child
function is unknown, it can be because:

– The child function is not on the search path.

– The child function is not in the current folder.

– The file was moved or deleted.

• To list the files that call each MATLAB code file, select Show parent
functions.

The report limits the parent (calling) functions to functions in the
current folder.

• To include subfunctions in the report, select Show subfunctions. The
report lists subfunctions directly after the main function and highlights
them in gray.

4 Click Run Report on Current Folder.

Reading and Working with Dependency Reports
The following image shows a Dependency Report. It indicates that chirpy.m
calls two files in Signal Processing Toolbox and one in Image Processing
Toolbox. It also shows that go.m calls mobius.m, which is in the current folder.

10-17



10 Tuning and Managing MATLAB® Code Files

10-18



Using MATLAB® Reports

The Dependency Report includes the following:

• MATLAB File List

The list of files in the folder on which you ran the Dependency Report.
Click a link in this column to open the file in the Editor.

• Children

The function or functions called by the MATLAB file.

Click a link in this column to open the MATLAB file listed in the same row,
and go to the first reference to the called function. For instance, suppose
your Dependency Report appears as shown in the previous image. Clicking
\images\images\erode.m opens chirpy.m and places the cursor at the
first line that references erode. In other words, it does not open erode.m.

• Multiple class methods

Because the report is a static analysis, it cannot determine run-time
data types and, therefore, cannot identify the particular class methods
required by a file. If multiple class methods match a referenced method,
the Dependency Report inserts a question mark link next to the file name.
The question mark appears in the following image.

Click the question mark link to list the class methods with the specified
name that MATLAB might use. MATLAB lists almost all the method
files on the search path that match the specified method file (in this case,
freqresp.m). Do not be concerned if the list includes methods of classes
and MATLAB built-in functions that are unfamiliar to you.

10-19



10 Tuning and Managing MATLAB® Code Files

It is not necessary for you to determine which file will be used. MATLAB
determines which method to use using the object that the program calls
at run time. The report provides this list to indicate possible toolboxes
and method files used.

The following image shows the contents of the right side of the Web
Browser after you click the question mark link.

Identifying How Much of a File Ran When Profiled
Run the Coverage Report after you run the Profiler to identify how much of a
file ran when it was profiled. For example, when you have an if statement
in your code, that block of code might not run during profiling, depending
on conditions.

You can view coverage details in the Profiler detail report, or by following
these steps:

1 On the MATLAB desktop, select Desktop > Profiler.

2 Profile a MATLAB code file in the Profiler.

For detailed instructions, see “Profiling for Improving Performance” on
page 10-27.

10-20



Using MATLAB® Reports

3 Select Desktop > Current Folder and navigate to the folder containing
the file for which you ran the Profiler.

4 On the Current Folder browser toolbar, click the Actions button , and
then select Reports > Coverage Report.

The Profiler Coverage Report appears, providing a summary of coverage
for the file you profiled. In the image that follows, the profiled file is
lengthofline2.m.

5 Click the Coverage link to see the Profile Detail Report for the file.

10-21



10 Tuning and Managing MATLAB® Code Files

Using the Code Analyzer Report

In this section...

“Running the Code Analyzer Report” on page 10-22

“Changing Code Based on Messages” on page 10-24

“Other Ways to Access Messages” on page 10-25

Running the Code Analyzer Report
The Code Analyzer Report displays potential errors and problems, as well as
opportunities for improvement in your code through M-Lint messages. For
example, a common message indicates that a variable foo might be unused.

To run the Code Analyzer Report:

1 In the Current Folder browser, navigate to the folder that contains the
files you want to check. To use the example shown in this documentation,
lengthofline.m, you can change the current folder by running

cd(fullfile(matlabroot,'help','techdoc','matlab_env','examples'))

2 If you plan to modify the example, save the file to a folder for which you
have write access. Then, make that folder the current MATLAB folder.
This example, saves the file in I:\my_MATLAB_files.

3 In the Current Folder browser toolbar, click the Actions button , and
then select Reports > Code Analyzer Report.

The report displays in the MATLAB Web Browser, showing those files
identified as having potential problems or opportunities for improvement.

10-22



Using the Code Analyzer Report

Line number and
message

4 For each message in the report, review the suggestion and your code. Click
the line number to open the file in the Editor at that line, and change the
file based on the message. Use the following general advice:

• If you are unsure what a message means or what to change in the code,
click the link in the message if one appears. For details, see “Preventing
and Identifying Coding Problems” on page 9-107.

• If the message does not contain a link, and you are unsure what a
message means or what to do, search for related topics in the Help
browser. For examples of messages and what to do about them,
including specific changes to make for the example, lengthofline.m,
see “Changing Code Based on Messages” on page 10-24.

10-23



10 Tuning and Managing MATLAB® Code Files

• The messages do not provide perfect information about every situation
and in some cases, you might not want to change anything based on
the message. For details, see “Understanding the Limitations of Code
Analysis” on page 9-132.

• If there are certain messages or types of messages you do not want to
see, you can suppress them. For details, see “Suppressing Message
Indicators and Messages” on page 9-117.

5 After modifying it, save the file. Consider saving the file to a different name
if you made significant changes that might introduce errors. Then you can
refer to the original file, if needed, to resolve problems with the updated
file. Use Tools > Compare Against in the Editor to help you identify the
changes you made to the file. For more information, see “Comparing Text
Files” on page 7-52.

6 Run and debug the file or files again to be sure that you have not introduced
any inadvertent errors.

7 If the report is displaying, click Rerun This Report to update the report
based on the changes you made to the file. Ensure that the messages are
gone, based on the changes you made to the files.

Changing Code Based on Messages
For information on how to correct the potential problems presented in M-Lint
messages, use the following resources:

• Open the file in the Editor and click the link for an extended message in
the tooltip, as shown in the image following this list. Not all messages have
extended messages.

• Look for relevant topics in the Programming Fundamentals and
“Programming Tips” documentation.

• Use the Help browser Search and Index panes to find documentation
about terms presented in the messages.

The following image shows a tooltip with a link to an extended M-Lint
message. The orange line under the = sign indicates a tooltip, including
an extended message, displays if you hover over the = sign. The orange
highlighting indicates that an automatic fix is available.

10-24



Using the Code Analyzer Report

Other techniques to help you identify problems in and improve your code
are in these topics:

• “Enable syntax highlighting” on page 9-22 in the Command Window and
the Editor

• “Examining Errors” on page 3-7 generated when you run the file

• “Finding Errors, Debugging, and Correcting MATLAB Files” on page 9-104

• “Profiling for Improving Performance” on page 10-27 for improving
performance

Other Ways to Access Messages
You can get M-Lint messages using any of the following methods. Each
provides the same messages, but in a different format:

• Access the Code Analyzer Report for a file from the Editor Tools menu
or from the Profiler detail report.

• Run the mlint function, which analyzes the specified file and displays
messages in the Command Window.

10-25



10 Tuning and Managing MATLAB® Code Files

• Run the mlintrpt function, which runs mlint and displays the messages
in the Web Browser.

• Use automatic code analysis while you work on a file in the Editor.
See“Preventing and Identifying Coding Problems” on page 9-107.

10-26



Profiling for Improving Performance

Profiling for Improving Performance

In this section...

“What Is Profiling?” on page 10-27

“Profiling Process and Guidelines” on page 10-28

“Using the Profiler” on page 10-30

“Profile Summary Report” on page 10-36

“Profile Detail Report” on page 10-38

“The profile Function” on page 10-46

What Is Profiling?
Profiling is a way to measure where a program spends time. To assist you in
profiling, MATLAB software provides a graphical user interface, called the
Profiler, which is based on the results returned by the profile function.
Once you identify which functions are consuming the most time, you can
determine why you are calling them. Then, look for ways to minimize their
use and thus improve performance. It is often helpful to decide whether the
number of times the code calls a particular function is reasonable. Because
programs often have several layers, your code might not explicitly call the
most time-consuming functions. Rather, functions within your code might
be calling other time-consuming functions that can be several layers down
in the code. In this case it is important to determine which of your functions
are responsible for such calls.

Profiling helps to uncover performance problems that you can solve by:

• Avoiding unnecessary computation, which can arise from oversight

• Changing your algorithm to avoid costly functions

• Avoiding recomputation by storing results for future use

When profiling spends most of its time on calls to a few built-in functions, you
have probably optimized the code as much as you can.

10-27



10 Tuning and Managing MATLAB® Code Files

Note When using the Parallel Computing Toolbox™ software, you can use
the parallel profiler to profile parallel jobs. See “Using the Parallel Profiler”
for details.

Profiling Process and Guidelines
Here is a general process you can follow to use the Profiler to improve
performance in your code. This section includes the following topics:

• Using Profiling as a Debugging Tool

• “Using Profiling to Understand an Unfamiliar File” on page 10-29

Tip Premature optimization can increase code complexity unnecessarily
without providing a real gain in performance. Your first implementation
should be as simple as possible. Then, if speed is an issue, use profiling to
identify bottlenecks.

1 In the summary report produced by the Profiler, look for functions that
used a significant amount of time or are called most frequently. See “Profile
Summary Report” on page 10-36 for more information.

2 View the detail report produced by the Profiler for those functions and look
for the lines that use the most time or are called most often. See “Profile
Detail Report” on page 10-38 for more information.

Consider keeping a copy of your first detail report as a basis for comparison.
After you change the function file, run the Profiler again and compare
the reports.

3 Determine whether there are changes you can make to the lines most called
or the most time-consuming lines to improve performance.

For example, if you have a load statement within a loop, load is called
every time the loop is called. You might be able to save time by moving the
load statement so it is before the loop and therefore is called only once.

10-28



Profiling for Improving Performance

4 Click the links to the files and make the changes you identified for potential
performance improvement. Save the files and run clear all. Run the
Profiler again and compare the results to the original report. Note that
there are inherent time fluctuations that are not dependent on your code.
If you profile the identical code twice, you can get slightly different results
each time.

5 Repeat this process to continue improving the performance.

Using Profiling as a Debugging Tool
The Profiler is a useful tool for isolating problems in your code.

For example, if a particular section of a file did not run, you can look at the
detail reports to see what lines did run. The detail report might point you
to the problem.

You can also view the lines that did not run to help you develop test cases
that exercise that code.

If you get an error in the file when profiling, the Profiler provides partial
results in the reports. You can see what ran and what did not to help you
isolate the problem. Similarly, you can do this if you stop the execution using
Ctrl+C. Using Ctrl+C can be useful when a file is taking much more time
to run than expected.

Using Profiling to Understand an Unfamiliar File
For a lengthy MATLAB code file that you did not create, or with which you
are unfamiliar, use the Profiler to see how the file actually works. Use the
Profiler detail reports to see the lines called.

If there is an existing GUI tool (or file) like one that you want to create, start
profiling, use the tool, then stop profiling. Look through the Profiler detail
reports to see what functions and lines ran. This helps you determine the
lines of code in the file that are most like the code you want to create.

10-29



10 Tuning and Managing MATLAB® Code Files

Using the Profiler
Use the Profiler to help you determine where you can modify your code to
make performance improvements. The Profiler is a tool that shows you where
a file is spending its time. This section covers:

• “Opening the Profiler” on page 10-30

• “Running the Profiler” on page 10-30

• “Profiling a Graphical User Interface” on page 10-35

• “Profiling Statements from the Command Window” on page 10-35

• “Changing Fonts for the Profiler” on page 10-35

For information about the reports generated by the Profiler, see “Profile
Summary Report” on page 10-36 and “Profile Detail Report” on page 10-38.

Opening the Profiler
You can use any of the following methods to open the Profiler:

• Select Desktop > Profiler from the MATLAB desktop.

• Click the Profiler button in the MATLAB desktop toolbar.

• With a file open in the MATLAB Editor, select Tools > Open Profiler.

• Select one or more statements in the Command History window, right-click
to view the context menu, and then select Profile Code.

• Type profile viewer in the Command Window:

Running the Profiler
To profile a MATLAB code file or a line of code:

1 If your system uses Intel® multi-core chips, consider restricting the active
number of CPUs to one.

See one of the following for details:

• “Intel Multi-Core Processors — Setting for Most Accurate Profiling on
Windows Systems” on page 10-32

10-30



Profiling for Improving Performance

• “Intel Multi-Core Processors — Setting for Most Accurate Profiling on
Linux Systems” on page 10-33

2 In the Command Window, type profile viewer.

3 Do one of the following in the Profiler:

• For a statement you have not profiled in the current MATLAB session:

In the Run this code field, type the statement you want to run.

For example, you can run the Lotka-Volterra demo, which is provided
with MATLAB demos (lotkademo):

[t,y] = ode23('lotka',[0 2],[20;20])

• For a statement you previously profiled in the current MATLAB session:

1 Select the statement from the list box—MATLAB automatically starts
profiling the code.

2 Skip to step 5.

4 Click Start Profiling.

While the Profiler is running, the Profile time indicator is green and the
number of seconds it reports increases. The Profile time indicator appears
at the top right of the Profiler window.

When the Profiler finishes, the Profile time indicator becomes dark red
and shows the length of time the Profiler ran. The statements you profiled
display as having been executed in the Command Window.

10-31



10 Tuning and Managing MATLAB® Code Files

This time is not the actual time that your statements took to run. It is the
wall clock (or tic/toc) time elapsed from when you clicked Start Profiling
until profiling stops. If the time reported is very different from what you
expected (for example, hundreds of seconds for a simple statement), you
might have had profiling on longer than you realize. This time also does
not match the time reported in Profiler Summary report statistics, which is
based on cpu time by default, not wall clock time. To view profile statistics
based on wall clock time, use the profile function with the -timer real
option as shown in “Using the profile Function to Change the Time Type
Used by the Profiler” on page 10-50.

5 When profiling is complete, the Profile Summary report appears in the
Profiler window. For more information about this report, see “Profile
Summary Report” on page 10-36.

6 Reset the number of active CPUs to the original setting if you restricted
the number in step 1.

Intel Multi-Core Processors — Setting for Most Accurate Profiling on
Windows Systems. If your system uses Intel multi-core chips, and you plan
to profile using CPU time, set the number of active CPUs to one before you
start profiling. This results in the most accurate and efficient profiling.

1 Open Windows Task Manager.

2 On the Processes tab, right-click MATLAB.exe and then click Set Affinity.

The Processor Affinity dialog box opens.

3 In the Processor Affinity dialog box, note the current settings, and then
clear all the CPUs except one.

Your Processor Affinity dialog box should appear like the following image.

10-32



Profiling for Improving Performance

4 Click OK.

5 Reset the state of the Profiler so that it recognizes the processor affinity
changes you made. The easiest way to do so is to change the Profiler
timer setting to real and then back to cpu, by issuing the following in the
Command Window:

profile -timer real
profile -timer cpu

Remember to set the number of CPUs back to their original settings when you
finish profiling. Rerun the preceding steps, and restore the original selections
in the Processor Affinity dialog box in step 3.

Intel Multi-Core Processors — Setting for Most Accurate Profiling on
Linux Systems. If your system uses Intel multi-core chips, and you plan to
profile using CPU time, set the number of active CPUs to one before you start
profiling. This results in the most accurate and efficient profiling.

For example, to set the processor affinity to one you can use the Linux
taskset command, as follows:

10-33



10 Tuning and Managing MATLAB® Code Files

1 Get the process ID (PID) of the currently running MATLAB instance:

ps -C MATLAB
PID TTY TIME CMD
8745 pts/1 00:00:50 MATLAB

The PID in this example is 8745.

2 Call the Linux taskset command to get the current number of active CPUs
for the MATLAB process:

taskset -pc 8745
pid 8745's current affinity list: 0-3

The -p option specifies that taskset operate on an existing PID, instead of
creating a new task. The -c option lists the processor numbers.

3 Call the Linux taskset command again — this time to set the processor
affinity for the MATLAB process to one CPU (that is, CPU #0):

taskset -pc 0 8745
pid 8745's current affinity list: 0-3
pid 8745's new affinity list: 0

For more information on the syntax of taskset, execute man taskset from
a Linux terminal.

Reset the state of the Profiler so that it recognizes the processor affinity
changes you made. The easiest way to do this is to change the Profiler
timer setting to real and then back to cpu, by issuing the following in the
Command Window:

profile -timer real
profile -timer cpu

Remember to set the number of CPUs back to its original setting when you
finish profiling. Rerun the preceding steps, and then restore the original
number of CPUs returned in step 2.

10-34



Profiling for Improving Performance

Profiling a Graphical User Interface
You can run the Profiler for a graphical user interface, such as the Filter
Design and Analysis tool included with Signal Processing Toolbox. You can
also run the Profiler for an interface you created, such as one built using
GUIDE.

To profile a graphical user interface:

1 In the Profiler, click Start Profiling. Make sure that no code appears
in the Run this code field.

2 Start the graphical user interface. (If you do not want to include its startup
process in the profile, do not click Stop Profiling, step 1, until after you
start the graphical interface.)

3 Use the graphical interface. When you finish, click Stop Profiling in
the Profiler.

The Profile Summary report appears in the Profiler.

Profiling Statements from the Command Window
To profile more than one statement:

1 In the Profiler, clear the Run this code field and click Start Profiling.

2 In the Command Window, enter and run the statements you want to profile.

3 After running all the statements, click Stop Profiling in the Profiler.

The Profile Summary report appears in the Profiler.

Changing Fonts for the Profiler
To change the fonts used in the Profiler:

1 Select File > Preferences > Fonts to open the Font Preferences dialog
box.

2 Select the code or text font that you want to use in the Profiler. The Profiler
is an HTML Proportional Text tool. For more information, click the Help
button in the dialog box.

10-35



10 Tuning and Managing MATLAB® Code Files

3 Click Apply or OK. The Profiler font reflects the changes.

Profile Summary Report
The Profile Summary report presents statistics about the overall execution of
the function and provides summary statistics for each function called. The
report formats these values in four columns.

• Function Name — A list of all the functions and subfunctions called by
the profiled function. When first displayed, the functions are listed in
order by the amount of time they took to process. To sort the functions
alphabetically, click the Function Name link at the top of the column.

• Calls — The number of times the function was called while profiling was
on. To sort the report by the number of times functions were called, click
the Calls link at the top of the column.

• Total Time — The total time spent in a function, including all child
functions called, in seconds. The time for a function includes time spent
on child functions. To sort the functions by the amount of time they
consumed, click the Total Time link at the top of the column. By default,
the summary report displays profiling information sorted by Total Time.
Be aware that the Profiler itself uses some time, which is included in the
results. Also note that total time can be zero for files whose running time
was inconsequential.

• Self Time— The total time spent in a function, not including time for any
child functions called, in seconds. If MATLAB can determine the amount of
time spent for profiling overhead, MATLAB excludes it from the self time
also. (MATLAB excludes profiling overhead from the total time and the
time for individual lines in the Profile Detail Report as well.)

The bottom of the Profiler page contains a message like one of the following,
depending on whether MATLAB can determine the profiling overhead:

- Self time is the time spent in a function excluding:

• The time spent in its child functions

• Most of the overhead resulting from the process of profiling

In the present run, self time excludes 0.240 secs of profiling overhead.
The amount of remaining overhead reflected in self time cannot be
determined, and therefore is not excluded.

10-36



Profiling for Improving Performance

- Self time is the time spent in a function excluding the time spent in its
child functions. Self time also includes some overhead resulting from the
process of profiling.

To sort the functions by this time value, click the Self Time link at the
top of the column.

• Total Time Plot — Graphic display showing self time compared to total
time.

The following is an image of the summary report for the Lotka-Volterra model
used in “Example: Using the profile Function” on page 10-47.

In the summary report, you can:

• Print it, by clicking the Print button .

• Get more detailed information about a particular function by clicking its
name in the Function Name column. See “Profile Detail Report” on page
10-38 for more information.

• Sort by a given column by clicking the name of the column. For example,
click to sort by the names of the functions included in the
summary report.

10-37



10 Tuning and Managing MATLAB® Code Files

Profile Detail Report
The Profile Detail report shows profiling results for a selected function that
was called during profiling. A Profile Detail report has seven sections. The
topics that follow describe each section. By default, the Profile Detail report

10-38



Profiling for Improving Performance

includes all seven sections, although, depending on the function, not every
section contains data. To return to the Profile Summary report from the
Profile Detail report, click the Home button in the toolbar.

The following topics provide details about opening and using a Profile Detail
Report:

• “Opening the Profile Detail Report” on page 10-39

• “Controlling the Contents of the Detail Report Display” on page 10-39

• “Profile Detail Report Header” on page 10-40

• “Parent Functions” on page 10-41

• “Busy Lines” on page 10-41

• “Child Functions” on page 10-42

• “Code Analyzer Results” on page 10-43

• “File Coverage” on page 10-44

• “Function Listing” on page 10-45

Opening the Profile Detail Report
To open the Profile Detail Report:

1 Create a Profile Summary report, as described in “Using the Profiler” on
page 10-30.

2 Click a function name listed in the Profile Summary report.

Controlling the Contents of the Detail Report Display
To specify which sections the Profile Detail Report includes:

1 Select report options from the set of check boxes at the top of the report.

2 Click the Refresh button.

10-39



10 Tuning and Managing MATLAB® Code Files

:�����
&������

Profile Detail Report Header
The detail report header includes:

• The name of the function profiled

• The number of times the profiled function was called in the parent function

• The amount of time the profiled function used

• A link that opens the function in your default text editor

• A link that copies the report to a separate window

Creating a copy of the report is helpful when you change the file, run the
Profiler for the updated file, and compare the Profile Detail reports for the
two runs. Do not change files provided with products from MathWorks,
that is, files in the matlabroot/toolbox folders.

10-40



Profiling for Improving Performance

Parent Functions
To include the Parents section in the Detail Report, select the Show parent
functions check box. This section of the report provides information about
the parent functions, with links to their detail reports. Click the name of a
parent function to open a Detail Report for that parent function.

Busy Lines
To include information about the lines of code that used the most amount of
processing time in the detail report, select the Show busy lines check box.

10-41



10 Tuning and Managing MATLAB® Code Files

Child Functions
To include the Children section of the detail report, select the Show child
functions check box. This section of the report lists all the functions called
by the profiled function. If the called function is a MATLAB code file, you can
view the source code for the function by clicking its name.

10-42



Profiling for Improving Performance

Code Analyzer Results
To include the Code Analyzer results section in the detail report display,
select the Show Code Analyzer results check box. This section of the report
provides information about problems and potential improvements for the
function. For more information, see “Using the Code Analyzer Report” on
page 10-22.

10-43



10 Tuning and Managing MATLAB® Code Files

File Coverage
To include the Coverage results section in the detail report display, select
the Show file coverage check box. This section of the report provides
statistical information about the number of lines in the code that executed
during the profile run.

10-44



Profiling for Improving Performance

Function Listing
To include the Function listing section in the detail report display, select
the Show function listing check box. If the file is a MATLAB code file, the
Profile Detail report includes three columns:

• The first column lists the execution time for each line.

• The second column lists the number of times the line was called

• The third column specifies the source code for the function.

In the function listing, the color of the text indicates the following:

• Green — Comment lines

• Black — Lines of code that executed

• Gray — Lines of code that did not execute

By default, the Profile Detail report highlights lines of code with the longest
execution time. The darker the highlighting, the longer the line of code took
to execute.

10-45



10 Tuning and Managing MATLAB® Code Files

To change the lines of code highlighted based on other criteria, use the
drop-down menu in this section of the detail report. The color of the
highlighting changes, depending on the drop-down option you choose. You
can choose to highlight lines of code called the most, lines of code that were
(or were not) executed, or lines called out by M-Lint. Or, you can turn off
highlighting by selecting none.

The following image shows that lines highlight in blue when you select
coverage from the drop-down menu.

The profile Function
The Profiler is based on the results returned by the profile function. The
profile function provides some features that are not available in the GUI.
For example, use the profile function to specify that statistics display the
time it takes for statements to run as clock time, instead of CPU time.

This section includes the following topics with respect to the profile function:

• “Example: Using the profile Function” on page 10-47

• “Accessing profile Function Results” on page 10-48

10-46



Profiling for Improving Performance

• “Saving profile Function Reports” on page 10-50

• “Using the profile Function to Change the Time Type Used by the Profiler”
on page 10-50

Example: Using the profile Function
This example demonstrates how to run profile:

1 To start profile, type the following in the Command Window:

profile on

2 Execute a MATLAB code file. This example runs the Lotka-Volterra
predator-prey population model. For more information about this model,
type lotkademo, which runs a demonstration.

[t,y] = ode23('lotka',[0 2],[20;20]);

3 Generate the profile report and display it in the Profiler window. This
suspends profile.

profile viewer

4 Restart profile, without clearing the existing statistics.

profile resume

The profile function is now ready to continue gathering statistics for
any more files you run. It will add these new statistics to those statistics
generated in the previous steps.

5 Stop profile when you finish gathering statistics.

profile off

6 To view the profile data, call profile specifying the 'info' argument. The
profile function returns data in a structure.

p = profile('info')

p =

10-47



10 Tuning and Managing MATLAB® Code Files

FunctionTable: [10x1 struct]
FunctionHistory: [2x0 double]
ClockPrecision: 3.3333e-010

ClockSpeed: 3.0000e+009
Name: 'MATLAB'

The FunctionTable indicates that statistics were gathered for 10 functions.

7 To save the profile report, use the profsave function. This function stores
the profile information in separate HTML files, for each function listed in
FunctionTable of p.

profsave(p)

By default, profsave puts these HTML files in a subfolder of the current
folder named profile_results, and displays the summary report in your
system browser. You can specify another folder name as an optional second
argument to profsave.

Accessing profile Function Results
The profile function returns results in a structure. This example illustrates
how you can access these results:

1 To start profile, specifying the history option, type the following in the
Command Window:

profile on -history

The history option specifies that the report include information about the
sequence of functions as they are entered and exited during profiling.

2 Execute a MATLAB code file. This example runs the Lotka-Volterra
predator-prey population model. For more information about this model,
type lotkademo, which runs a demonstration.

[t,y] = ode23('lotka',[0 2],[20;20]);

3 Stop profiling.

profile off

10-48



Profiling for Improving Performance

4 Get the structure containing profile results.

stats = profile('info')
stats =

FunctionTable: [43x1 struct]
FunctionHistory: [2x754 double]
ClockPrecision: 3.3333e-010

ClockSpeed: 3.0000e+009
Name: 'MATLAB'

5 The FunctionTable field is an array of structures, where each structure
represents a MATLAB function (M-function), MATLAB subfunction,
MEX-function, or, because the builtin option is specified, a MATLAB
built-in function.

stats.FunctionTable

ans =

41x1 struct array with fields:
CompleteName
FunctionName
FileName
Type
NumCalls
TotalTime
TotalRecursiveTime
Children
Parents
ExecutedLines
IsRecursive
PartialData

6 View the second structure in FunctionTable.

stats.FunctionTable(2)

ans =
CompleteName: [1x79 char]

10-49



10 Tuning and Managing MATLAB® Code Files

FunctionName: 'ode23'
FileName: [1x73 char]

Type: 'M-function'
NumCalls: 1

TotalTime: 0.3902
TotalRecursiveTime: 0

Children: [20x1 struct]
Parents: [0x1 struct]

ExecutedLines: [139x3 double]
IsRecursive: 0
PartialData: 0

7 To view the history data generated by profile, view the FunctionHistory,
for example, stats.FunctionHistory. The history data is a 2-by-n array.
The first row contains Boolean values, where 0 (zero) means entrance into
a function and 1 means exit from a function. The second row identifies the
function being entered or exited by its index in the FunctionTable field. To
see how to create a formatted display of history data, see the example on
the profile reference page.

Saving profile Function Reports
To save the profile report, use the profsave function.

This function stores the profile information in separate HTML files, for each
function listed in the FunctionTable field of the structure, stats.

profsave(stats)

By default, profsave puts these HTML files in a subfolder of the current
folder named profile_results. You can specify another folder name as an
optional second argument to profsave.

profsave(stats,'mydir')

Using the profile Function to Change the Time Type Used by
the Profiler
By default, MATLAB generates the Profiler Summary report using CPU time,
as opposed to real (wall clock) time. This example illustrates how you can
direct MATLAB to use real time instead.

10-50



Profiling for Improving Performance

The following image shows the Profiler Summary report as it appears by
default, using CPU time.

���������	
���
��
	����

10-51



10 Tuning and Managing MATLAB® Code Files

Specify that the Profiler use real time instead, by using the profile function
with the -timer real option, as shown in this example:

1 If the Profiler is currently open, close the Profiler, and if prompted, stop
profiling.

2 Set the timer to real time by typing the following in the Command Window:

profile on -timer real

3 Run the file that you want to profile. This example runs the Lotka-Volterra
predator-prey population model.

[t,y] = ode23('lotka',[0 2],[20;20]);

4 Open the Profiler by typing the following in the Command Window:

profile viewer

The Profiler opens and indicates that it is using real time, as shown in
the following image.

10-52



Profiling for Improving Performance

4��������
	����
���
�����

5 To change the timer back to using CPU time:

a Close the Profiler, and if prompted, stop profiling.

10-53



10 Tuning and Managing MATLAB® Code Files

b Type the following in the Command Window:

profile on -timer cpu

c Type the following in the Command Window to reopen the Profiler:

profile viewer

10-54



11

Publishing MATLAB Code

MATLAB software lets you mark up MATLAB code and publish it to various
output file formats.

• “Overview of Publishing MATLAB Code” on page 11-2

• “Marking Up MATLAB Comments for Publishing” on page 11-17

• “Marking Up MATLAB Code for Publishing” on page 11-60

• “Specifying Output Preferences for Publishing” on page 11-64

• “Summary of Options for Presenting Your Code to Others” on page 11-106



11 Publishing MATLAB® Code

Overview of Publishing MATLAB Code

In this section...

“What Is Meant by Publishing MATLAB Code?” on page 11-2

“Using Code Cells” on page 11-2

“Process for Publishing MATLAB Code” on page 11-3

“Example of Published MATLAB Code” on page 11-4

“Adding the Markup for the Example” on page 11-10

What Is Meant by Publishing MATLAB Code?
MATLAB software enables you to publish your MATLAB code quickly, so
you can describe and share your code with others, even if they do not have
MATLAB software. You can include the following within the file you want to
publish:

• Commentary on the code, including bulleted and numbered lists, bold and
monospace font, preformatted text, LaTeX equations, and so on

• MATLAB code

• Results of running the code, including output to the Command Window and
figures created or modified by the code

You can publish in various formats, including HTML, XML, and LaTeX. If
Microsoft Word or Microsoft® PowerPoint® applications are on your Microsoft
Windows system, you can publish to their formats as well.

If you have an active Internet connection, you can watch the Publishing M
Code from the Editor video demo for an overview of the major publishing
features using cells with text markup.

Using Code Cells
After you write and debug MATLAB code, if you insert code cells and
commentary using text markup features, you can publish the code as a
document. A code cell is a section of MATLAB code (see “What Are Code

11-2



Overview of Publishing MATLAB® Code

Cells?” on page 9-175). For the purposes of publishing, a code cell can be
either of the following, or both:

• A section of the code that you want to present as a titled subsection within
the output

• A portion of code for which you want the results of code evaluation to
display as it occurs (for example, each iteration of a for loop)

Any code cell features that you use for evaluating and improving your code, as
described in “Evaluating Subsections of Files Using Code Cells” on page 9-175,
you also can use for publishing purposes. However, to display comments in
the output document, those comments must appear at the start of a code cell,
before any executable code. This can require you to change code cells that you
inserted for evaluating subsections of code. If you do so, be aware that this
changes the cells for evaluation purposes, as well.

“Example of Published MATLAB Code” on page 11-4 shows how the code ells
and formatted comments appear you publish MATLAB code.

Although you typically include the text markup after you write and debug
the code, you can also include text markup as you write the code. Or, you
can do both.

Note Cell mode is supported for use with files containing MATLAB code
only. It is not intended for use with other text files.

Process for Publishing MATLAB Code
The overall process to publish a MATLAB code file using code cell features in
the Editor is as follows:

1 Open your file in the Editor.

2 Select Cell > Insert Text Markup as described in “Marking Up MATLAB
Comments for Publishing” on page 11-17.

11-3



11 Publishing MATLAB® Code

This enables you to specify how MATLAB comments appear in the output.
For example, you can specify that comments appear as bold or monospaced
text.

3 To publish the file, do one of the following, as described in “Specifying
Output Preferences for Publishing” on page 11-64:

• To publish the file with default publishing properties, select
File > Publish file name. When you use this method, MATLAB
publishes the file to HTML in an /html subfolder of the folder that
contains the file you are publishing. However, if you previously specified
custom property values, as described in the next list item, publishing
uses the last configuration you specified. The output file formats and
folder can be different from the default.

• To specify custom publishing properties, select File > Publish
Configuration for file name > Edit Publish Configurations for
file name, adjust properties, and then click Publish. You can, for
example, choose to include or exclude the executable code from the
output.

Example of Published MATLAB Code
This section provides an example to demonstrate how MATLAB code appears
when published. It shows how the file appears before and after text markup
is added to code cells to achieve the desired results. This section contains
the following topics:

• “Sample File Before Adding Markup” on page 11-4

• “Published Sample File Before Adding Markup” on page 11-5

• “Published Sample File After Adding Markup” on page 11-7

For detailed information on inserting text markup, see “Marking Up MATLAB
Comments for Publishing” on page 11-17.

Sample File Before Adding Markup

function fourier_demo
t = 0:.1:pi*4;
y = sin(t);

11-4



Overview of Publishing MATLAB® Code

updatePlot(t,y);

% In each iteration of the for loop add an odd
% harmonic to y. As "k" increases, the output
% approximates a square wave with increasing accuracy.

for k = 3:2:9
% Perform the following mathematical operation
% at each iteration:
y = y + sin(k*t)/k;

display(sprintf('When k = %.1f',k));
display('Then the plot is:');
updatePlot (t,y)

end

end

% Even though the approximations are constantly
% improving, they will never be exact because of the
% Gibbs phenomenon, or ringing.

function updatePlot(t,x)
% Subfunction to update the plot

cla
plot(t,x)

end

Published Sample File Before Adding Markup
Before you add text markup and cell breaks, publishing fourier_demo.m
includes the last plot generated by the for loop, but otherwise, has little
effect. For example, if you select File > Publish fourier_demo.m, the
output, as shown in the following figure, are of limited use.

11-5



11 Publishing MATLAB® Code

11-6



Overview of Publishing MATLAB® Code

Published Sample File After Adding Markup
If you add comments for clarity, apply text markup, and insert code cell
breaks, as described in “Adding the Markup for the Example” on page 11-10,
publishing the code transforms the output as shown in the following three
figures:

• The first figure shows the top of the output.

• The second figure shows the middle of the output.

• The third figure shows the bottom of the output.

��%	��������
�

���
�������������

�������%���

'��	�������
���	%������
��%	����

11-7



11 Publishing MATLAB® Code

���
�������
������
�%

�;	��������
��<�������

3�%
	������%
���������������
����
���

11-8



Overview of Publishing MATLAB® Code

11-9



11 Publishing MATLAB® Code

Adding the Markup for the Example
The following steps apply text markup to the fourier_demo.m file. When
published to HTML, the output appears as shown in “Published Sample File
After Adding Markup” on page 11-7.

For detailed information about each Cell menu option, see “Marking Up
MATLAB Comments for Publishing” on page 11-17.

1 Open fourier_demo.m by running the following command:

edit(fullfile(matlabroot,'help','techdoc',...
'matlab_env','examples','fourier_demo.m'))

To work with fourier_demo.m on your system, save the file to a folder
for which you have write permission. In the example, the file is saved to
I:\my_matlab_files\my_mfiles\fourier_demo.m.

2 Enable cell mode by selecting Cell > Enable Cell Mode.

3 Add an overall title and introduction:

a Select Cell > Insert Text Markup > Document Title and
Introduction. MATLAB adds the following at the top of the file:

%% DOCUMENT TITLE
% INTRODUCTORY TEXT

The double percent signs (%%) indicate the start of a new code cell. A
single percent sign indicates the beginning of a comment line.

b Replace DOCUMENT TITLE with Square Waves from Sine Waves.

c Replace % INTRODUCTORY TEXT with one or more comments about the
overall file, for example:

% The Fourier series expansion for a square-wave is
% made up of a sum of odd harmonics, as shown here
% using MATLAB(R).

The string “(R)” appears as a registered trademark symbol when you
publish it.

11-10



Overview of Publishing MATLAB® Code

d On line 5, insert a blank line for better readability. Notice that the file
now contains two cells. The first cell extends from line 6 to the top of the
file; the second cells extends from line 6 to the bottom of the file. The
cell break at line 6, splits the file into two cells.

4 On line 6, where the second cell begins (as indicated by %%), type a title for
the cell: Add an Odd Harmonic and Plot It.

When you move from one cell to the next in the file, the highlighting in the
file indicates the code cell containing the cursor.

5 To display the commented text as explanatory text, rather than MATLAB
code, insert a cell break before the explanation. That is:

a Place the cursor at line 12.

b Select Cell > Insert Cell Break.
The code cell that begins on line 12, continues to the end of the
fourier_demo function. If you insert a cell break anywhere within the code
block, MATLAB inserts an implicit cell break at the end of a code block. A
code block is the body of any programming control statement or function.

11-11



11 Publishing MATLAB® Code

6 Remove the quotation marks around the k at line 14 and present it in italic
instead:

a Delete the quotation marks.

b Select the letter k.

c Select Cell > Insert Text Markup > Italic Text.

Instead of appearing enclosed in quotation marks, the letter now appears
as _k_.

d To see the effect, click Publish .

7 MATLAB publishes output generated by code immediately after the end
of the cell that contains the code. Therefore, the current cell would cause
MATLAB to publish the phrase When k = n Then the plot is: four
times in succession. In addition, only the final plot generated by the for
loop would be published.

To include every plot generated by the for loop, each preceded by the
phrase When k = n ..., create a cell within the for loop, as follows:

a Place the cursor at the end of line 17, after for k = 3:2:9.

b Select Cell > Insert Cell Break.

Now the current cell includes only the body of the for loop.

11-12



Overview of Publishing MATLAB® Code

c To see the effect, click Publish .

8 Display equations with symbols and Greek characters (such as pi) using
the LaTeX format. In this example, to output a comment containing a
polished presentation of the equation, y = y + sin(k*t)/k, use text
markup as follows:

a Position the cursor at the end of the comment on line 20, % at each
iteration.

b Select Cell > Insert Text Markup > LaTeX Equation.

MATLAB inserts the following lines; the second line is a sample equation
with text markup applied:

%
% $$e^{\pi i} + 1 = 0$$
%

11-13



11 Publishing MATLAB® Code

The Editor highlights the sample equation, which is the text between
the set of two dollar signs ($$).

c Replace the sample equation with the following LaTeX equation:

y = y + \frac{sin(k*t)}{k}

The three lines that display the LaTeX equation now appear as follows
in the file:

%
% $$y = y + \frac{sin(k*t)}{k} $$
%

d To see the effect, click Publish .

9 Reduce the size of the figures in the output by editing the publish
configuration for the file:

a Select File > Publish Configuration for fourier_demo > Edit
Publish Configurations for fourier_demo.m.

The Edit Configurations dialog box opens.

b In the column to the right of Max image width (pixels), double-click
Inf, and type the value 350.

c In the column to the right of Max image height (pixels), double-click
Inf, and type the value 350.

d Click Save As. The Save Publish Settings dialog box opens.

e In the Settings name field, type small_images, and then click Save.

f Click Close.

g To see the effect, click Publish .

10 To create a section header without including a cell break, follow these steps:

a Position the cursor at the beginning of line 33, where the comment %
Even though the approximations are constantly appears.

b Select Cell > Insert Text Markup > Section Title without Cell
Break.

c Replace SECTION TITLE with Note About Gibbs Phenomenon.

11-14



Overview of Publishing MATLAB® Code

d Delete line 34, where the comment % DESCRIPTIVE TEXT appears.

11 Select File > Save File and Publish fourier_demo.

When you publish the code to HTML, it appears in the MATLAB Web
Browser, as shown in “Published Sample File After Adding Markup” on
page 11-7.

By default, MATLAB stores the HTML document, fourier_demo.html, and
the associated image files in an /html subfolder within the folder containing
the source file, fourier_demo.m.

See “MATLAB Code After Text Markup” on page 11-15 for the resulting code.

MATLAB Code After Text Markup
After adding text markup, the fourier_demo.m file appears as follows. When
you publish the file to HTML, it appears as shown in “Published Sample File
After Adding Markup” on page 11-7.

%% Square Waves from Sine Waves
% The Fourier series expansion for a square-wave is
% made up of a sum of odd harmonics, as shown here
% using MATLAB(R).

%% Add an Odd Harmonic and Plot It
function fourier_demo

t = 0:.1:pi*4;
y = sin(t);
updatePlot(t,y);

%%
% In each iteration of the for loop add an odd
% harmonic to y. As _k_ increases, the output
% approximates a square wave with increasing accuracy.

for k = 3:2:9
%%
% Perform the following mathematical operation
% at each iteration:
%

11-15



11 Publishing MATLAB® Code

% $$ y = y + \frac{sin(k*t)}{k} $$
%
y = y + sin(k*t)/k;

display(sprintf('When k = %.1f',k));
display('Then the plot is:');
updatePlot (t,y)

end

end

%% Note About Gibbs Phenomenon
% Even though the approximations are constantly
% improving, they will never be exact because of the
% Gibbs phenomenon, or ringing.

function updatePlot(t,x)
% Subfunction to update the plot

cla
plot(t,x)

end

To open the marked up file in the Editor, instead of following the steps
in “Adding the Markup for the Example” on page 11-10 run the following
command:

edit(fullfile(matlabroot,'help','techdoc',...
'matlab_env','examples','fourier_demo2.m'))

To work with fourier_demo2.m on your system, save the file to
fourier_demo.m in a folder for which you have write permission.

11-16



Marking Up MATLAB® Comments for Publishing

Marking Up MATLAB Comments for Publishing

In this section...

“Overview of Marking Up MATLAB Comments for Publishing” on page
11-18

“Creating Document Titles and Introductory Text for Publishing an
Existing File” on page 11-19

“Specifying Preformatted Text in MATLAB Files for Publishing” on page
11-25

“Specifying Bulleted or Numbered Lists in MATLAB Files for Publishing”
on page 11-27

“Specifying Graphics in MATLAB Files for Publishing” on page 11-30

“Using HTML Markup Tags in MATLAB Files for Publishing” on page 11-34

“Using LaTeX Markup for Publishing” on page 11-36

“Including Inline LaTeX Math Symbols in MATLAB Files for Publishing”
on page 11-39

“Including Blocks of LaTeX Math Symbols in MATLAB Files for Publishing”
on page 11-40

“Forcing a Snapshot of Output in MATLAB Files for Publishing” on page
11-42

“Including Bold, Italic, and Monospaced Text in MATLAB Files for
Publishing” on page 11-43

“Including Trademarks in MATLAB Files for Publishing” on page 11-45

“Including Hyperlinks in MATLAB Files for Publishing” on page 11-46

“Cleaning Up Text Markup Before Publishing MATLAB Files” on page 11-54

“Summary of Markup for Publishing MATLAB Files ” on page 11-57

Note Many examples in this section show the effects of publishing to
HTML. For information on how to publish to HTML, see “Specifying Output
Preferences for Publishing” on page 11-64.

11-17



11 Publishing MATLAB® Code

Overview of Marking Up MATLAB Comments for
Publishing
This section describes how to mark up comments in your MATLAB files so
that when you publish the code, it appears polished, rather than as a text
file of code. You can single-source your MATLAB code with documentation
that describes what the code is doing.

You can mark up MATLAB comments in either of the following ways to
specify the appearance of the file when you publish it:

• Use Cell > Insert Text Markup menu options to format the comments.

This method automatically inserts the text markup for you.

• Type the markup directly in the comments.

The markup symbols you type are the same as the text markup that results
when you use the equivalent menu item. See “Summary of Markup for
Publishing MATLAB Files ” on page 11-57 for details.

You can use text markup as you create a file, to mark up an existing file, or
a combination of the two. When you use the Cell menu options, the Editor
might insert more comment lines and other markup that you want.

Several examples in the sections that follow use this file, sine_wave.m:

% Define the range for x.
% Calculate and plot y = sin(x).
% Display plot in published MATLAB code.
x = 0:1:6*pi;
y = sin(x);
plot(x,y)
title('Sine Wave', 'FontWeight','bold')
xlabel('x')
ylabel('sin(x)')
set(gca, 'Color', 'w')
set(gcf, 'MenuBar', 'none')

11-18



Marking Up MATLAB® Comments for Publishing

Creating Document Titles and Introductory Text for
Publishing an Existing File
To specify a document title and introductory text for a MATLAB file, follow
these steps:

1 In the Editor, position the cursor anywhere in the file.

2 Select Cell > Insert Text Markup > Document Title and
Introduction. The first three lines of the file appear as shown in the
following image.

3 Replace DOCUMENT TITLE with the cell heading that you want to use; for
example, Plot Sine Wave.

11-19



11 Publishing MATLAB® Code

4 Replace INTRODUCTORY TEXT with text that introduces the file; for example,
Calculate and plot a sine wave.

5 Insert a blank comment line to increase readability.

If you specify the example text suggested in the previous list, then the
resulting file appears as follows.

Notice that a horizontal rule, which indicates a cell break, ends the title and
introductory text. When you insert a document title and introduction, the
Editor also adds a cell break in preparation for the first section within the file.

When you publish the file, the document title is displays as a top-level
heading (h1 in HTML), using a large size, bold font. The introductory text

11-20



Marking Up MATLAB® Comments for Publishing

appears polished. The following figure shows the file published to HTML and
presented in the MATLAB Web Browser.

Specifying a Title for the New Section that the Editor Inserts
with the Document Title
When you follow the steps in the previous section, “Creating Document Titles
and Introductory Text for Publishing an Existing File” on page 11-19, the first
cell, demarcated in the Editor with the horizontal rule followed by a line with
double percent signs (%%), does not appear when you publish the file. It is not
evident because the section does not have a title.

To provide a title for the section, insert text after the double percent signs on
line 4—for example, Calculate and Plot Sine Wave. When you republish
the file to HTML, it appears in the MATLAB Web Browser as shown in the
following image. Notice that MATLAB automatically inserts the Contents
heading and the link to the section when you publish the file to HTML.

11-21



11 Publishing MATLAB® Code

The file now has a document title, introductory text, and a first section. You
can add more sections, as described in “Creating New Section Titles” on
page 11-22.

Note You can add any comments in the lines immediately following the title.
However, if you want the title to appear as the overall document title, you
cannot add any other text before the next cell (a line starting with %%) .

Creating New Section Titles
To insert a new section title and descriptive text within a MATLAB file, follow
these steps:

1 Position the cursor where you want to insert a new cell—before the title
function shown in the example, for instance.

11-22



Marking Up MATLAB® Comments for Publishing

2 Select Cell > Insert Text Markup > Section Title with Cell Break.
The file appears as follows.

3 Replace SECTION TITLE with your title—Modify Plot Properties, for
example.

4 Replace DESCRIPTIVE TEXT with text that describes the cell—Add labels
and set colors., for example.

If you specify the example text suggested in the previous list and “Specifying
a Title for the New Section that the Editor Inserts with the Document Title”
on page 11-21, then the resulting file appears as follows.

11-23



11 Publishing MATLAB® Code

When you publish the file to HTML, the section title appears as a heading,
using a medium size, bold font. Comments appear as polished text. The
following figure shows the results when you publish the updated sine_wave.m
file to HTML output. Notice that the Modify Plot Properties heading
is appears as an h2.

11-24



Marking Up MATLAB® Comments for Publishing

Specifying Preformatted Text in MATLAB Files for
Publishing
MATLAB software enables you to specify preformatted text in a MATLAB
file. Preformatted text appears in monospace font, maintains white space,
and does not wrap long lines.

11-25



11 Publishing MATLAB® Code

To insert preformatted text, follow these steps:

1 Position the cursor within the file where you want to insert preformatted
text.

2 Select Cell > Insert Text Markup
> Preformatted Text.

Five lines of text are inserted.

3 Being careful not to delete the two blank spaces before the word
PREFORMATTED, replace the words PREFORMATTED and TEXT with
your text. Your text can include tabs, spaces, and additional comment
lines. For example:

a Replace PREFORMATTED with Preformatted text line 1.

b Insert a tab before TEXT on line 4.

The resulting comments appear as follows.

11-26



Marking Up MATLAB® Comments for Publishing

If you save the file to preformatted_text.m and then publish the file to
HTML, the output appears as shown in the following figure.

Specifying Bulleted or Numbered Lists in MATLAB
Files for Publishing
The following steps describe how to specify text markup for a bulleted or
numbered list, so that it appears as shown when you publish it. .

11-27



11 Publishing MATLAB® Code

1 Position the cursor at the end of the line that precedes the location where
you want to add a list. For example, if your file contains the following lines,
position the cursor after the colon:

%%
% This cell has three items:

2 Select Cell > Insert Text Markup > Bulleted List or Cell > Insert Text
Markup > Numbered List, depending on the type of list you want.

MATLAB adds four lines of comments to the file. The following figure
shows the result when you insert a bulleted list.

11-28



Marking Up MATLAB® Comments for Publishing

If you insert a numbered list, the text markup is the same, except a number
sign (#) indicates a numbered list item.

3 Replace the sample text, ITEM1 and ITEM2, with your text. For example,
replace ITEM1 with A and replace ITEM2 with B.

4 To create a multiline list item, break the line as desired, but do not insert
the list item symbol (* or #) before the second line. For example, to insert
the alphabet as a multiline list item, breaking the line at the letter p, type
the alphabet as shown in the following figure.

11-29



11 Publishing MATLAB® Code

Notice that the third list item breaks over two comment lines in the source,
yet maintains the appearance of a list when published (as shown at the
beginning of this section).

Specifying Graphics in MATLAB Files for Publishing
You can insert text markup to publish an image that the MATLAB code
did not generate. This is shown in the following example. (By default, the
publishing includes images generated by the MATLAB code.)

1 Position the cursor where you want to add a graphic. For example, if your
file contains the following lines, position the cursor after the colon:

%% Image Example
% This is a graphic:

2 Select Cell > Insert Text Markup > Image. MATLAB adds text markup,
as shown in the following figure.

11-30



Marking Up MATLAB® Comments for Publishing

3 Replace FILENAME.PNG, with the file name of the graphic you want to
insert, relative to the folder where MATLAB publishes the file.

For example, if you want to include the graphic, surfpeaks.png, and
it is in the folder into which MATLAB publishes the MATLAB code file,
then replace FILENAME.PNG with surfpeaks.png. See “Creating the
surfpeaks.png Image” on page 11-33.

By default, MATLAB publishes the file to an /html subfolder of the folder
containing the file. You can change this folder, referred to as the output
folder, by changing the publish configuration settings, as described in
“Specifying Output Preferences for Publishing” on page 11-64.

If the graphic is not in the folder to which you publish the file, then
you must specify the location of the graphic file as a relative path from
the location of the file that results from publishing. The following table
summarizes how to specify such graphics, assuming the folder containing
the MATLAB code is I:\my_MATLAB_files.

Folder Where publish
Saves the Output

Image File Location How to Specify the Image in
the MATLAB Comment

I:/my_MATLAB_files/html I:/my_MATLAB_files/html % <<surfpeaks.jpg>>

I:/my_MATLAB_files/doc I:/my_MATLAB_files/images % <<../images/surfpeaks.jpg>>

11-31



11 Publishing MATLAB® Code

When you publish the file to HTML, the output appears as shown in the
following figure.

Valid Image Types for Output File Formats
The type of images you can include when you publish depends on the output
type of that document as indicated in the table that follows. For greatest
compatibility, MathWorks recommends using the default image format for
each output type.

Output File Format Types of Images You Can Include

doc Any format that your installed version of
Microsoft Office supports.

html Any format publishes successfully.
Ensure that the tools you use to view and
process the output files can display the
output format you specify.

11-32



Marking Up MATLAB® Comments for Publishing

Output File Format Types of Images You Can Include

latex Any format publishes successfully.
Ensure that the tools you use to view and
process the output files can display the
output format you specify.

pdf bmp and jpg .

ppt Any format that your installed version of
Microsoft Office supports.

xml Any format publishes successfully.
Ensure that the tools you use to view and
process the output files can display the
output format you specify.

Creating the surfpeaks.png Image
To create the surfpeaks.png image used in the preceding example, follow
these steps:

1 Create an html subfolder in the folder where the file that references the
graphic is located.

2 Enter the following in the Command Window:

>> surf(peaks)

A Figure window opens and displays the surfpeaks figure.

3 Save the figure as surfpeaks.jpg in the html subfolder that you created
in step 1.

Note Unless you reduce the size of surfpeaks.jpg, it will appear larger
than shown in the previous example.

11-33



11 Publishing MATLAB® Code

Using HTML Markup Tags in MATLAB Files for
Publishing
You can use the Cell menu to insert HTML code into your MATLAB file.
When you do so, the Editor inserts HTML code for a one-column, two-row
table. You can use the inserted code as a guideline for inserting other HTML
code.

Note When you insert text markup for HTML code, the HTML code publishes
only when the specified output file format is HTML. For example, if you add
HTML markup, but then specify LaTeX as the output file format, publishing
excludes the text enclosed within the HTML markup. See “Specifying Output
Preferences for Publishing” on page 11-64 for information on specifying the
output file format.

To insert the text markup for HTML code, follow these steps:

1 Position the cursor at the end of the comment that precedes the location
where you want to insert HTML code. For example, if the file contains the
following lines, position the cursor after the colon:

%% HTML Markup Example
% This is a table:

2 Select Cell > Insert Text Markup > HTML Markup. MATLAB adds
HTML markup, as shown in the following figure.

11-34



Marking Up MATLAB® Comments for Publishing

3 Edit the inserted HTML code to specify the HTML code that you want to
use.

If you publish the file to HTML and leave the inserted HTML code as is,
MATLAB creates a single-row table with two columns. The table contains the
values one and two, as shown in the following figure.

11-35



11 Publishing MATLAB® Code

Using LaTeX Markup for Publishing
You can use the Cell menu to insert LaTeX code. You can use the inserted
code as a guideline for inserting other LaTeX code.

Note When you insert text markup for LaTeX code, that code publishes
only when the specified output file format is LaTeX. For example, if you add
LaTeX markup, but specify HTML as the output file format, publishing
excludes the code enclosed within the LaTeX markup. See “Specifying Output
Preferences for Publishing” on page 11-64 for information on specifying the
output file format.

To insert the text markup for LaTeX code, follow these steps:

1 Position the cursor at the end of the comment that precedes the location
where you want to insert LaTeX code. For example, if the file contains the
following lines, position the cursor after the colon:

%% LaTeX Markup Example
% This is a table:

2 Select Cell > Insert Text Markup > LaTeX Markup. MATLAB adds
LaTeX markup, as shown in the following figure.

11-36



Marking Up MATLAB® Comments for Publishing

3 Edit the inserted LaTeX code to specify the LaTeX code that you want to
use.

Suppose you publish the file to LaTeX, and leave the inserted markup text as
is. In that case, the Editor opens a new file with the LaTeX code, as shown in
the following figure. (See “Creating a Publish Configuration for a MATLAB
File” on page 11-66 for information on specifying LaTeX as the output format.)

11-37



11 Publishing MATLAB® Code

If you compile the published LaTeX code, it appears as follows.

11-38



Marking Up MATLAB® Comments for Publishing

Including Inline LaTeX Math Symbols in MATLAB Files
for Publishing
You can make LaTeX math symbols appear inline when you publish a
MATLAB file to any format, except Microsoft PowerPoint®. For Microsoft
PowerPoint output, consider “Using LaTeX Markup for Publishing” on page
11-36 instead.

To make a LaTeX math symbol appear inline, enclose the string within dollar
sign symbols ($) within a formatted comment block.

For example, suppose your file appears as follows:

When you publish the file to HTML, it appears as in the image that follows.
Notice that the LaTeX math symbols are inline with the rest of the text:

11-39



11 Publishing MATLAB® Code

For a list of symbols you can display, and the character sequence to create
them, see the MATLAB String property.

Including Blocks of LaTeX Math Symbols in MATLAB
Files for Publishing
You can use the Cell menu to insert LaTeX symbols in blocks offset from
the main comment text. You can use the inserted code as a guideline for
inserting other LaTeX code.

1 Position the cursor before the line where you want to add an equation or
symbols. For example, if your file contains the following lines, position the
cursor after the colon on the end of the third line:

%% LaTeX Block Example
%
% This is an equation:
% It is not inline with the text.

2 Select Cell > Insert Text Markup > LaTeX Equation to insert the
sample equation markup.

11-40

../ref/text_props.html#String


Marking Up MATLAB® Comments for Publishing

3 Replace the inserted sample markup e^{\pi i} + 1 = 0 with the LaTeX
math symbols that you want.

For a list of symbols you can display, and the character sequence to create
them, see the MATLAB String property.

Publishing the code to HTML, and leaving the inserted sample text markup
as is, results in this:

11-41

../ref/text_props.html#String


11 Publishing MATLAB® Code

Forcing a Snapshot of Output in MATLAB Files for
Publishing
You can use the Cell menu to insert code that forces a snapshot of output,
such as a figure. This is useful, for example, if you have a for loop that
generates numerous figures and you want to publish them all, after the for
loop end statement.

1 Position the cursor at the end of the line where you want to force a snapshot
of the output. For example, if your file contains the following lines, position
the cursor after the line containing the imagesc function:

%% Scale magic Data and Display as Image:

for i=1:3
imagesc(magic(i))

end

2 Select Cell > Insert Text Markup > Force Snapshot to insert the
snapnow function:

%% Scale magic Data and Display as Image:

for i=1:3
imagesc(magic(i))
snapnow;

end

3 If you publish the file to HTML, it resembles the following figure. The
images in your HTML will be larger than shown in the figure. To resize
images generated by MATLAB code, use the Max image width andMax
image height Publish settings, as described in “Specifying Output
Preferences for Publishing” on page 11-64.

11-42



Marking Up MATLAB® Comments for Publishing

Including Bold, Italic, and Monospaced Text in
MATLAB Files for Publishing
You can mark selected strings in the MATLAB comments so that they display
in bold, italic, or monospaced text when you publish the file. The following
sections provide instructions.

Marking Up Existing Comments with Font Formats
To mark up existing comments, follow these steps:

1 Within a comment, select text that you want to be bold, italic, or
monospaced.

2 Select Cell > Insert Text Markup, and then select Bold Text, Italic
Text, or Monospaced Text.

11-43



11 Publishing MATLAB® Code

Inserting New Comments with Font Formats
To insert sample text that you will replace with your new comment text,
follow these steps:

1 Select Cell > Insert Text Markup, and then select Bold Text, Italic
Text, or Monospaced Text.

2 Replace the inserted text with the text that you want.

When the Editor inserts sample text, the inserted text appears as follows:

% *BOLD TEXT*
% _ITALIC TEXT_
% |MONOSPACED TEXT|

Example of Font Formats
Suppose your file appears as follows.

Mark up the comments as follows:

1 Select the word Define, and then select Cell > Insert Text
Markup > Bold Text.

2 Select the word range, and then select Cell > Insert Text
Markup > Italic Text.

3 Position the cursor after the word for, insert a space, and then select
Cell > Insert Text Markup > Monospaced Text.

11-44



Marking Up MATLAB® Comments for Publishing

The file appears as follows.

4 Replace |MONOSPACED TEXT| with |x|.

If you publish the file to HTML, the output appears as shown in the following
figure.

Including Trademarks in MATLAB Files for Publishing
If the comments in your MATLAB file include trademarked terms, you can
include text to produce a trademark symbol (™) or registered trademark
symbol (®) in the output.

• To produce the trademark symbol, enter (TM) in a MATLAB comment.

11-45



11 Publishing MATLAB® Code

• To produce the registered trademark symbol, enter (R) in a MATLAB
comment.

For example, suppose you enter lines in a file as shown in the following image.

If you publish the file to HTML, it appears as follows in the MATLAB Web
Browser.

Including Hyperlinks in MATLAB Files for Publishing
You can insert dynamic or static hyperlinks within a MATLAB comment, and
then publish the MATLAB file to HTML or XML. You can also publish static
hyperlinked text to Microsoft Word.

11-46



Marking Up MATLAB® Comments for Publishing

When you specify a dynamic hyperlink, MATLAB evaluates the hyperlinked
code when someone clicks it in the output. This practice is useful when, for
example, you want to point the reader to MATLAB code or documentation or
you want the link to run code. When you specify a static hyperlink to a Web
location, you specify a complete URL within the code. This is useful when you
want to point the reader to a location on the Web. For both static and dynamic
hyperlinks, the output contains active hyperlinks.

You can include or exclude the URL from a static hyperlink. Consider
including the URL, for example, when you anticipate that readers of your
output file might view it in printed form, and therefore need the URL.
Consider excluding the URL, when you are confident that readers will view
your output online and therefore be able to click the hyperlink.

This section includes the following topics:

• “Inserting Static Hyperlinks and Publishing URLs” on page 11-47

• “Inserting Static Hyperlinks Without Publishing URLs” on page 11-48

• “Inserting Dynamic Hyperlinks” on page 11-49

• “Effect of Copying Hyperlinked Text from the MATLAB Command
Window” on page 11-53

Inserting Static Hyperlinks and Publishing URLs
You can insert a URL, such as www.mathworks.com, that you know at the time
you write the file by following these steps:

1 Within a comment, position the cursor where you want to insert the
hyperlinked text. For example, suppose you want to specify a link to more
information about a topic and you have the following comment within the
file:

%%
% For more information, see our Web site:

Position your cursor after the colon (:).

2 Select Cell > Insert Text Markup > Hyperlinked Text.

11-47



11 Publishing MATLAB® Code

The Editor inserts the following:

<http://www.mathworks.com MathWorks>

3 Replace www.mathworks.com with the URL you want to use.

4 Delete the string, MathWorks.

When you publish the file to HTML, the results resemble the following figure
(except the URL in this image is still http://www.mathworks.com).

Inserting Static Hyperlinks Without Publishing URLs
To insert hyperlinked text without a printed URL, follow these steps:

1 Within a comment, position the cursor where you want to insert the
hyperlinked text. For example, suppose you want to specify a hyperlink to
the MathWorks Web site and you have the following lines within your file:

%%
% For more information, see the MathWorks Web site.

Select the text you want to replace with a hyperlink. For example, select
“MathWorks"

2 Select Cell > Insert Text Markup
> Hyperlinked Text. The Editor replaces the selected text with the
following:

<http://www.mathworks.com MathWorks>

11-48



Marking Up MATLAB® Comments for Publishing

If you publish the file to HTML, the results are as shown in the following
figure.

3 Replace www.mathworks.com with the URL that you want to use.

4 Replace MathWorks with the text that you want to appear as the
hyperlinked text.

Inserting Dynamic Hyperlinks
You can insert a hyperlink which MATLAB evaluates at the time a reader
clicks that link. You implement these links using matlab: syntax.

You cannot insert dynamic links in Microsoft Word files.

Note A reader must have MATLAB running for dynamic links to work.

The following sections provide examples:

• “Inserting a Dynamic Link To Run Code” on page 11-49

• “Inserting a Dynamic Link to a File” on page 11-50

• “Inserting a Dynamic Link to a MATLAB Function Reference Page” on
page 11-52

Inserting a Dynamic Link To Run Code. You can specify a dynamic
hyperlink to run code when a user clicks the hyperlink. For example, the
following matlab: syntax creates hyperlinks in the output, which when
clicked either enable or disable recycling:

11-49



11 Publishing MATLAB® Code

%% Recycling Preference
% Click the preference you want:
%
% <matlab:recycle('off') Disable recycling>
% <matlab:recycle('on') Enable recycling>

When you publish the file to HTML, the results resemble the following figure:

When you click one of the hyperlinks, MATLAB sets the recycle command
accordingly. After clicking a hyperlink, run recycle in the Command Window
to confirm the setting is as you expect.

Inserting a Dynamic Link to a File. You can specify a link to a file that
you know is in your readers’ matlabroot. You do not need to know where
each reader installed MATLAB. To insert a dynamic link to a file, follow
these steps:

1 Within a comment, position the cursor where you want to insert the link.
For example, suppose you want to specify a link to the MATLAB help topic
for the publish function. Also suppose you have the following comment
within the file:

%%
% See the code

11-50



Marking Up MATLAB® Comments for Publishing

% for the publish function.

2 Replace the word code with the following markup:

<matlab:web(fullfile(matlabroot,'toolbox','matlab','codetools','publish.m')) code>

The resulting code now appears as follows:

%%

% See the <matlab:web(fullfile(matlabroot,'toolbox','matlab','codetools','publish.m')) code>

% for the publish function.

When you publish the file to HTML, the results resemble the following figure.

When you click the code link, the MATLAB Web browser opens and displays
the code for the publish function. On the reader’s system, MATLAB issues
the command (although the command does not appear in the reader’s
Command window). Notice in the Web browser title bar that the matlabroot
specification in the file resolves to the reader’s installation folder for MATLAB.

11-51



11 Publishing MATLAB® Code

Inserting a Dynamic Link to a MATLAB Function Reference Page.
You can specify a link to a MATLAB function reference page using matlab:
syntax. For example, suppose your readers have MATLAB installed and
running. To provide a link to the publish reference page, follow these steps:

1 Within a comment, position the cursor where you want to insert the
hyperlinked text. For example, suppose you want to specify a link to the
MATLAB help topic for the publish function. Furthermore, suppose you
have the following comment within the file:

%%
% See the help for the publish function.

2 Replace the word publish with the following markup:

<matlab:doc('publish') publish>

The resulting file code now appears as follows:

%%

11-52



Marking Up MATLAB® Comments for Publishing

% See the help for the <matlab:doc('publish') publish> function.

When you publish the file to HTML, the results resemble the following figure.

When you click the publish hyperlink, the MATLAB help browser opens and
displays the reference page for the publish function. On the reader’s system,
MATLAB issues the command (although the command does not appear in
their Command window).

Effect of Copying Hyperlinked Text from the MATLAB Command
Window
If you copy statements that display hyperlinked text from the MATLAB
Command Window to a file and then publish that file, results might not be
as you expect. When you do so, the output shows the code rather than the
hyperlink.

For example, suppose you enter the following code in the Command Window:

disp('<a href="http://www.mathworks.com">Link to MathWorks</a>')

When you press Return, the Command Window displays a link to the
MathWorks Web site:

11-53



11 Publishing MATLAB® Code

However, if you include the preceding disp statement in a file that you
publish, the HTML tag and the included text appears in the output, rather
than a link:

disp('<a href="http://www.mathworks.com">Link to MathWorks</a>')

Instead, use one of the methods described in these sections:

• “Inserting Static Hyperlinks and Publishing URLs” on page 11-47

• “Inserting Static Hyperlinks Without Publishing URLs” on page 11-48

• “Inserting Dynamic Hyperlinks” on page 11-49

Cleaning Up Text Markup Before Publishing MATLAB
Files
When you insert text markup into an existing file using the Cell menu
options, sometimes more comment lines than you need are inserted. You can
adjust the inserted comments as needed for your purposes. If you delete blank
comment lines that the Cell menu options insert there might be unintended
consequences, however. See “Specifying Preformatted Text in MATLAB Files
for Publishing” on page 11-25 for details.

The following example shows how you can use Cell menu options with an
existing file.

Suppose a file currently appears in the Editor as shown in the following image.

11-54



Marking Up MATLAB® Comments for Publishing

If you position the cursor anywhere within the file and select Cell > Insert
Text Markup > Document Title and Introduction, the file looks like
the following.

11-55



11 Publishing MATLAB® Code

The file already contains a comment with introductory text, so you can delete
the % INTRODUCTORY TEXT line and the double percent sign (%%) line. When
you do so, the code appears as follows.

11-56



Marking Up MATLAB® Comments for Publishing

Summary of Markup for Publishing MATLAB Files
The following table provides a summary of the text markup that you can
type into a file to achieve the same results as using the Cell > Insert Text
Markup menu options. These tables are useful if you are not using the
MATLAB Editor, or if you do not want to use menus to apply markup. For a
description of the Cell menu options, see “Marking Up MATLAB Comments
for Publishing” on page 11-17.

Note The blank comment lines preceding and following some items, such as
bulleted lists, are required.

11-57



11 Publishing MATLAB® Code

Result in Output Example of Corresponding File Markup

Document title and introduction
%% DOCUMENT TITLE
% INTRODUCTORY TEXT

Section title and description
%% SECTION TITLE
% DESCRIPTIVE TEXT

Section title without cell break
%%% SECTION TITLE
% DESCRIPTIVE TEXT

Bold text
% *BOLD TEXT*

Italic text
% _ITALIC TEXT_

Monospaced text
% |MONOSPACED TEXT|

Hyperlinked text % <http://www.mathworks.com MathWorks>

Trademark symbol
% TEXT(TM)

Registered trademark symbol
% TEXT(R)

Code to force a snapshot of the
current output

snapnow;

Image
%
% <<FILENAME.PNG>> %
%

Bulleted list
%
% * ITEM
% * ITEM
%

11-58



Marking Up MATLAB® Comments for Publishing

Result in Output Example of Corresponding File Markup

Numbered list
%
% # ITEM1
% # ITEM2
%

HTML markup
%
% <html>
% <table border=1><tr>
% <td>one</td>
% <td>two</td></tr></table>
% </html>
%

LaTeX markup
%
% <latex>
% \begin{tabular}{|r|r}
% \hline $n$&$n!$\\
% \\hline 1&1\\ 2&2\\ 3&6\\
% \\hline
% \end{tabular}
% </latex>
%

LaTeX equation
% $$e^{\pi i} + 1 = 0$$

Preformatted text block
%
% This is a block of preformatted text.
% The first line of commented text must
% begin with two blank spaces.
%

11-59



11 Publishing MATLAB® Code

Marking Up MATLAB Code for Publishing

In this section...

“Overview of Marking Up MATLAB Code for Publishing” on page 11-60

“Specifying the Display of Code Output” on page 11-60

“Example of Marking Up Code” on page 11-60

Overview of Marking Up MATLAB Code for Publishing
This section describes ways to control how output that MATLAB generates
when it publishes executable MATLAB code. For example, you can direct
MATLAB to include the last, or all plots generated by a for loop. You
can interweave comments, code, and code output throughout your output
document to draw your readers’ attention to certain areas of interest.

Specifying the Display of Code Output
The method you use to specify how output displays in the document is the
same method you use to specify document titles and section headers; namely
the cell break (%%). When you insert a cell break into a file, it directs
MATLAB to publish the code and output contained in the cells created by the
break. Because the entire file is a cell, inserting a cell break results in the file
containing two cells. The first cells is the one above the cell break, and the
second is the one below the cell break. The examples in the remaining topics
demonstrate how you can use this behavior to control the output produced
by MATLAB code.

Example of Marking Up Code
This section provides an example to demonstrate how a MATLAB file appears
when published. It demonstrates how the published example file appears
before and after cell breaks are added.

Sample MATLAB File Before Inserting Mark Up in Code
Suppose your file contains the following code:

%% Scale magic Data and Display as Image

11-60



Marking Up MATLAB® Code for Publishing

for i=1:3
imagesc(magic(i))

end

The following image illustrates how the code presented appears when you
publish it to HTML. The plot in the figure is smaller than it appears if you
publish the code using factory default settings. For information on setting
publishing properties for images, see “Specifying Output Preferences for
Publishing” on page 11-64.

Notice that the output displays the plot after the end of the for loop and that
only the last plot generated by the code displays.

Sample MATLAB File After Inserting Cell Breaks in Code
By placing cell breaks within a loop, you can display the output that the
MATLAB code generates when iterating a loop.

11-61



11 Publishing MATLAB® Code

To include the plot generated by each iteration of the loop in the output file,
insert a cell break after the opening for statement. Position the cursor at the
end of the first line of the for loop, and then select Cell > Insert Cell Break.

The code now appears like this:

%% Scale magic Data and Display as Image

for i=1:3
%%
imagesc(magic(i))

end

Now when you publish the code to HTML, it appears as follows. The plots in
the figure are smaller than they appear if you publish the code using factory
default settings. For information on setting publishing properties for images,
see “Specifying Output Preferences for Publishing” on page 11-64.

Notice that the output file displays the plot within the for loop code. You
can also use text markup for similar results with figures. See “Marking Up
MATLAB Code for Publishing” on page 11-60 for details.

11-62



Marking Up MATLAB® Code for Publishing

11-63



11 Publishing MATLAB® Code

Specifying Output Preferences for Publishing

In this section...

“About Publishing Configurations” on page 11-64

“Creating a Publish Configuration for a MATLAB File” on page 11-66

“Running an Existing Publish Configuration” on page 11-92

“Creating Multiple Publish Configurations for a File” on page 11-93

“About the publish_configurations.m File” on page 11-104

“Finding Publish Configurations” on page 11-105

“Removing Publish Configurations” on page 11-105

“Reassociating and Renaming Publish Configurations” on page 11-105

About Publishing Configurations
Once you have marked up MATLAB code for publishing, as described in
“Marking Up MATLAB Comments for Publishing” on page 11-17 and
“Marking Up MATLAB Code for Publishing” on page 11-60 you are ready to
publish it. The easiest method for publishing a MATLAB code file is to use
the factory default publishing configuration. This method is appropriate if
your code requires no input arguments and you want to publish to HTML.
However, if your code requires input arguments, or if you want to specify
preferences for publishing (such as the output folder, output format, image
format, and so on), specify a custom configuration.

Publishing MATLAB Files Using No Input Arguments and
Factory Default Settings
To publish a MATLAB script or MATLAB function file that requires no input
arguments:

1 Open the file in the Editor.

2 Click the Publish button on the Editor toolbar.

11-64



Specifying Output Preferences for Publishing

By default, the Editor publishes the file using factory default settings. Factory
default settings specify that the output file format is HTML, that the code is
evaluated and included in the output file, and so on.

If the file is not in a folder on the search path or in the current folder, a dialog
box opens and presents you with options that allow you to publish the file.
Either change the current folder to the folder containing the file, or add the
folder containing the file to the MATLAB search path.

If the file has unsaved changes, publishing it from the Editor automatically
saves the changes before publishing.

Using Publish Configurations to Publish MATLAB Files Using
Input Arguments or Custom Settings
Using a publish configuration, you can specify custom settings, including
input arguments for a MATLAB function file in the Editor. You can associate
multiple publish configurations with a file for different publish settings, input
arguments, or both. MATLAB saves the configuration between sessions.

For example, the function collatzplot_new.m, which computes and plots the
Collatz sequence for any given positive integer, requires you to specify the
integer as an input value. You cannot simply publish collatplot_new.m
because the input value is not defined. A publish configuration enables you
to publish collatzplot_new(specific value).

You can also use publish configurations to provide preparatory or setup
information before publishing a file, whether it takes input arguments or not.

Note Publish configurations use the base MATLAB workspace. Therefore,
a value that you assign to a variable in a publish configuration overwrites
the value for that variable (assuming that it currently exists) in the base
workspace.

11-65



11 Publishing MATLAB® Code

Function Alternative to Publishing
From the Command Window, execute the publish function to run the file
and publish the results. See the publish function reference page for options
you can set.

Creating a Publish Configuration for a MATLAB File

• “Specifying File Input Using a Publish Configuration” on page 11-66

• “Specifying Publish Configuration Settings” on page 11-70

• “Specifying Values for the Publish Settings Property Table” on page 11-74

• “Creating a Template for Typical Publish Settings” on page 11-90

Specifying File Input Using a Publish Configuration
Follow these steps to create a publish configuration for a MATLAB code file in
the Editor. The example in this section shows how to create and use a publish
configuration to specify input arguments to a MATLAB function file.

These steps specify Editor toolbar buttons, but you can also use equivalent
items in the File menu.

1 Open the file that you want to publish in the Editor. This example uses
the code that follows. This code is like the sine_wave.m file, after it has
been marked up as described in “Marking Up MATLAB Comments for
Publishing” on page 11-17, but it is slightly altered to make it a MATLAB
function file. Save the code as sine_wave_f.m

%% Plot Sine Wave
% Calculate and plot a sine wave.

%% Calculate and Plot Sine Wave
% Calculate and plot |y = sin(x)|.

function sine_wave_f(x)

y = sin(x);
plot(x,y)

11-66



Specifying Output Preferences for Publishing

%% Modify Plot Properties

title('Sine Wave', 'FontWeight','bold')
xlabel('x')
ylabel('sin(x)')
set(gca, 'Color', 'w')
set(gcf, 'MenuBar', 'none')

2 Click the down arrow on the Publish button on the Editor toolbar,
and select Edit Publish Configuration for file name, where file name
in this example is sine_wave_f.m.

The Edit Configurations dialog box opens, with the default publish
configuration template for sine_wave_f.m, as shown in the following figure.

11-67



11 Publishing MATLAB® Code

3 In the Publish configuration name field, type a name for the publish
configuration, or accept the default name.

11-68



Specifying Output Preferences for Publishing

If you expect to create multiple configurations for a file, assign each a name
that helps you identify the configuration. In this figure, the default name
of the configuration is sine_wave_f.

4 In the MATLAB expression field, type the expression that you want the
Editor to evaluate when it publishes the file. In this example, delete the
commented statements and replace them as shown in the following figure.

You can modify the statements in the MATLAB expression area of the
dialog box, and then click Publish to see the results of the changes. If
you clear the MATLAB expression area, MATLAB publishes the file
without evaluating any code. This is equivalent to setting the Evaluate
code property in the Publish settings properties table to false.

5 In the Publish settings properties table, change the property values if you
do not want to use the current settings.

You can modify the property settings, and then click Publish to see the
results of the changes.

See “Specifying Values for the Publish Settings Property Table” on page
11-74 for details.

6 Do one of the following:

• To publish the file using the settings and MATLAB expression that you
have specified, click Publish.

For this example MATLAB creates the following files in
I:\my_matlab_files\my_mfiles\html, which is a subfolder in the
folder where sine_wave_f.m is located:

11-69



11 Publishing MATLAB® Code

– An output file, sine_wave_f.html

– A thumbnail file for the last image generated by the MATLAB code,
sine_wave_f.png

– Image files created by the executable MATLAB code,
sine_wave_f_##.png

• To create another publish configuration for the same file, click the plus
button , and then select Publish Configuration.

See “Creating Multiple Publish Configurations for a File” on page 11-93
for details.

• To close the Edit Configurations dialog box, click Close. MATLAB saves
the configuration and its association with the file.

After creating a configuration, you can view the MATLAB expression and use
the configuration to publish the file without opening the Edit Configurations
dialog box. See “Running an Existing Publish Configuration” on page 11-92
for details.

Specifying Publish Configuration Settings
This section describes how to specify new publish settings for a configuration.
Publish settings enable you to specify the folder to which an output file is
saved, how images generated by the code are captured and included in the
output, and so on.

1 If the Edit Configurations dialog box is not already open, click the down
arrow on the Publish button, and then click the configuration that
you want to change.

This example uses the sine_wave_f publish configuration as described in
“Creating a Publish Configuration for a MATLAB File” on page 11-66.

2 View the properties table below the Publish settings field to see the
current publish property values.

3 For information about a property, click the property name. A brief
description of that property displays below the publish settings property
table. For example, if you click Catch error, the dialog box appears as
shown in the following image.

11-70



Specifying Output Preferences for Publishing

���%��������������%��������������!

4 Optionally, you can change publish setting values by clicking in the column
to the right of the property name, and then entering or selecting a property
value. This example changes Max image width and Max image height
to 400.

The Editor marks each property that you change with a dot ( ) and adds the
string, (modified), next to User Default in the Publish settings field.

11-71



11 Publishing MATLAB® Code

See “Specifying Values for the Publish Settings Property Table” on page
11-74 for information about the various properties you can set.

3���%������������������������2���
	��������������������������
������������7��������	
���	�
������������

3���%������������������������������������
��������������7��������	
���������!���������

5 Click Publish to preview the publication of the file that is open in the
Editor using the new settings.

6 When you are satisfied with the results, click Save As.

11-72



Specifying Output Preferences for Publishing

The Save Publish Options dialog box opens and displays the names of all
the currently defined publish settings. By default the following publish
settings install with MATLAB:

• Factory Default

The MATLAB installation includes this set of publishing properties for
you to get started with publishing. It enables you to publish a MATLAB
file to HTML quickly and view the results. You can use it to test the effect
of changing settings. If you determine that the test settings produce
undesirable results, you can restore the Factory Default publish
settings by selecting it from the Publish settings drop-down list.

• User Default

The MATLAB installation includes this set of publishing properties
in anticipation that you will have a set of publishing properties that
are common to most or all of your publishing configurations. Initially,
User Default settings are identical to the Factory Default settings.
See “Creating a Template for Typical Publish Settings” on page 11-90
for an example of changing the User Default settings to best suit your
publishing needs.

7 In the Settings Name field, enter a meaningful name for the settings. For
example, reduce_image. Then click Save.

You can now use the reduce_image publish settings with other publish
configurations.

You can also overwrite the publishing properties saved in an existing
publish settings name. Select it from the Publish settings drop-down list,
and then click Overwrite. However, you cannot overwrite the Factory
Default publish settings.

Note When you overwrite a publish settings name, publish configurations
that currently specify the old name do not have their publish properties
updated to reflect the new settings. Instead, properties that have different
values from the updated publish settings appear with a dot next to each
of them.

11-73



11 Publishing MATLAB® Code

8 In the Edit Configurations dialog box, do one of the following:

• Click Publish to publish the file that is open in the Editor using the
new settings.

• Click Close to close the dialog box.

Specifying Values for the Publish Settings Property Table
The sections that follow describe each of the publish settings properties that
you can adjust when you create or update a publish configuration. To access a
publish configuration, open the file for which you want to create or update a
publish configuration, and then select File > Publish Configuration for
file name > Edit Publish Configurations for file name.

You can set or adjust values for the following properties:

• “Output file format” on page 11-74

• “Output folder” on page 11-75

• “XSL file” on page 11-75

• “Figure capture method” on page 11-75

• “Image format” on page 11-80

• “Use new figure” on page 11-80

• “Max image width” on page 11-86

• “Max image height” on page 11-86

• “Create thumbnail” on page 11-87

• “Include code” on page 11-87

• “Evaluate code” on page 11-87

• “Catch error” on page 11-89

• “Max # of output lines” on page 11-89

Output file format. Select one of the choices from the drop-down list to
publish the document to one of the following file formats:

• html — Publishes to an HTML document.

11-74



Specifying Output Preferences for Publishing

• xml — Publishes to an XML document.

• latex — Publishes to a LaTeX document.

• doc— Publishes to a Microsoft Word document, if your system is a PC.

• ppt— Publishes to a Microsoft PowerPoint document, if your system is a
PC.

• pdf — Publishes to a PDF document.

MATLAB names the output file with the same name as the publish
configuration that produced it and stores it, along with images that MATLAB
generates from code, in the folder specified with the Output folder property.

Output folder. Type the full path of the folder to which you want
MATLAB to publish the output document and its associated image files.
For example, if your file is in I:\my_matlab_files\my_mfiles, you might
specify I:\my_matlab_files\my_word_files if you are creating a publish
configuration for documents that you publish to Word.

XSL file. Type the full path of the Extensible Stylesheet Language (XSL) file,
that you want to use when you specify the Output file format as HTML,
XML, or LaTeX. If you leave this field blank, MATLAB uses a default
stylesheet that installs with the MATLAB software.

Figure capture method. Specify a figure capture method to indicate how
you want figures and dialog boxes that the MATLAB code creates to appear
when published.

The following list provides some suggestions on how to set this property,
depending on the type of document you are publishing. (The document shown
in the images that follow was published with theMax image width property
set to 150 pixels.)

• To output the Figure data and complete dialogs boxes that the MATLAB
code creates, set the Figure capture method to entireGUIWindow.

This method sets the figure background to white, presents just the plot for
the figure, but includes the window decorations (title bar, toolbar, menu
bar, and window border) for the dialog box in the output.

11-75



11 Publishing MATLAB® Code

• To output a tutorial on using MATLAB, set the Figure capture method
to entireFigureWindow.

Notice that this method preserves the background color for figures and
includes the window decorations for both figures and dialog boxes in the
output.

11-76



Specifying Output Preferences for Publishing

• To output figures with the plot background set to white and dialog boxes
without window decorations, set the Figure capture method to print.

11-77



11 Publishing MATLAB® Code

• To output figures and dialog boxes excluding window decorations, but
including the background color for figures, set the Figure capture
method to getframe.

11-78



Specifying Output Preferences for Publishing

The following table summarizes the effects of the various Figure capture
methods.

11-79



11 Publishing MATLAB® Code

Use this Figure Capture
Method

To Get Figure Captures with these Appearance Details

Window Decorations Plot Backgrounds

entireGUIWindow Included for dialog boxes;
Excluded for figures

Set to white for figures;
matches the screen for dialog
boxes

print Excluded for dialog boxes and
figures

Set to white

getframe Excluded for dialog boxes and
figures

Match the screen plot
background

entireFigureWindow Included for dialog boxes and
figures

Match the screen plot
background

Note Typically, MATLAB figures have the HandleVisibility property set
to on. Dialog boxes are figures with the HandleVisibility property set to
off or callback. If your results are different from the results listed in the
preceding list and table, the HandleVisibility of your figures or dialog boxes
might be atypical. For more information, see “HandleVisibility Property” in
the MATLAB Graphics documentation.

Image format. Select the file type for images produced when publishing
MATLAB files. The image file types available in the drop-down list depend on
the Figure capture method you specify. You can chose any type available
in the drop-down list, but for greatest compatibility select the default.

Use new figure. Set to true if you want MATLAB to create a Figure
window with a white background and at the default size before publishing if
the MATLAB code generates a figure. After publishing finishes, MATLAB
closes the Figure window.

To use a figure with different properties for publishing, set this property to
false. Then open a Figure window, change the size and background color, for
example, and then publish. Figures in your output use the characteristics of
the figure you opened before publishing.

11-80



Specifying Output Preferences for Publishing

Note This preference applies to executable MATLAB code that generates a
figure. It does not apply to figures included using the Cell > Insert Text
Markup > Image menu option.

The following example demonstrates how to specify new Figure window
properties for output images by setting the Use new figure publish settings
property to false:

1 Create sine_wave_f.m, as described in “Creating a Publish Configuration
for a MATLAB File” on page 11-66.

2 Create a Figure window by saving the following code in a file and then
running it:

function createfigure
%CREATEFIGURE

% Create figure
figure1 = figure('Name','purple_background',...
'Color',[0.4784 0.06275 0.8941]);
colormap('hsv');

% Create subplot
subplot(1,1,1,'Parent',figure1);
box('on');

% Create xlabel
xlabel({''});

% Create title
title({''});

The following figure appears.

11-81



11 Publishing MATLAB® Code

3 Reduce the size of the figure by dragging and dropping the edges. For
example:

11-82



Specifying Output Preferences for Publishing

4 Do not close the window.

5 Make sine_wave_f.m the active file in the Editor, and then select
File > Publish Configurations for sine_wave_f.m > Edit Publish
Configurations for sine_wave_f.m.

6 In the Publish settings drop-down list, select Factory Default.

7 If you have previously set Publish settings for sine_wave_f.m, the
Change Publish Settings dialog box opens. Click Change to Factory
Default.

8 In the Publish settings properties table, set Use new figure to false.

11-83



11 Publishing MATLAB® Code

9 Click Publish. MATLAB publishes sine_wave_f.m as shown in the
following figure.

11-84



Specifying Output Preferences for Publishing

11-85



11 Publishing MATLAB® Code

Max image width. Overwrite the current value to restrict the width of
images in the output. Note the following about this property:

• It applies only to images that the code generates. It does not apply to
images you include using the method described in “Specifying Graphics in
MATLAB Files for Publishing” on page 11-30.

• It applies when you select an Image Format property setting that is a
bitmap, such as .png or .jpg.

• It does not apply when the Image Format property setting is a vector
format, such as .eps.

• The image’s aspect ratio is maintained. If you restrict both height and
width using theMax image width andMax image height properties to
resize the image, then MATLAB maintains the aspect ratio. It does so by
using the maximum you specified for one dimension and something less
than the maximum for the other dimension.

• MATLAB ignores this property when the Output file format is pdf.

Max image height. Overwrite the current value to restrict the height of
images in the output. Note the following about this property:

• It applies only to images that the code generates. It does not apply to
images you include using the method described in “Specifying Graphics in
MATLAB Files for Publishing” on page 11-30.

• It applies when you select an Image Format property setting that is a
bitmap, such as .png or .jpg.

• It does not apply when the Image Format property setting is a vector
format, such as .eps.

• The image’s aspect ratio is maintained. If you restrict both width and
height using theMax image width andMax image height properties to
resize the image, then MATLAB maintains the aspect ratio. It does so by
using the maximum you specified for one dimension and something less
than the maximum for the other dimension.

• MATLAB ignores this property when the Output file format is pdf.

11-86



Specifying Output Preferences for Publishing

Create thumbnail. Set to true to direct MATLAB to create a thumbnail
image if the Image Format preference is a bitmap, such as .png or .jpg. For
example, you can use this thumbnail to represent your file in HTML pages.
If you create your own demos and include them in the Help browser Demos
pane using a demos.xml file, MATLAB automatically creates a list of your
demos that includes the thumbnail for each.

Set to false to direct MATLAB to not create a thumbnail image.

Include code. Set to true to have MATLAB include the MATLAB code
in the output. Set to false to the have MATLAB exclude the code from all
output file formats except HTML. When the output file format is HTML,
MATLAB inserts the MATLAB code in the output file as an HTML comment.
Therefore, when viewed in a Web browser, for example, the MATLAB code
does not display.

Use the MATLAB grabcode function if you want to extract the MATLAB code
from the output HTML file.

For example, suppose you publish
I:/my_matlabfiles/my_mfiles/sine_wave_f.m to HTML using a publish
configuration with the Include code property set to false. If you share the
output with colleagues, they can view it in a Web browser. If your colleagues
want to see the MATLAB code that generated the output, they can issue the
following command from the folder containing sine_wave_f.html:

grabcode('sine_wave_f.html')

MATLAB opens the file that created sine_wave_f.html in the Editor.

See “Creating a Publish Configuration for a MATLAB File” on page 11-66
for the sine_wave_f.m code.

Evaluate code. Set to true to direct MATLAB to evaluate the MATLAB code
while publishing the results and include the results in the output document.
Also specify the Max # of output lines property to specify the maximum
number of lines you want to include in the output. This property is helpful
when you have code that produces much output and you only want to include
a sample of it.

11-87



11 Publishing MATLAB® Code

Set to false, to:

• Direct MATLAB to not evaluate the code, nor include code results when
publishing a file.

• Use the publish function to publish the file that contains the publish
function. Otherwise, MATLAB attempts to publish the file recursively.

Because MATLAB does not evaluate the code when you set this property to
false, there can be invalid code in the file. Therefore, consider first running
the file with this property set to true.

For example, suppose you include comment text, Label the plot, in a file,
but forget to preface it with the comment character. If you publish the
document to HTML, and set Evaluate code to true, the output includes the
error, such as shown in the following figure.

11-88



Specifying Output Preferences for Publishing

Catch error. Set to true to direct MATLAB to publish and include the error
message text in the output if an error occurs when it evaluates the code.

Set to false to direct MATLAB to terminate the publish operation if an error
occurs when it evaluates the code.

This property has no effect if you set the Evaluate code property to false.

Max # of output lines. Type a value to specify the maximum number of
output lines that you want to include after each cell break in the output.

For example, suppose your MATLAB code includes a loop, such as the
following:

11-89



11 Publishing MATLAB® Code

for n = 1:100
disp(x)

end;

If you publish the code, then by default, all 100 lines generated by the
preceding code appears in the output. If you want to include a smaller
representative sample, setMax # of output lines to a small value, such as 10.

Creating a Template for Typical Publish Settings
Use the User Default publish settings installed with MATLAB to create a
template for all or most of your publish configurations.

Initially, the User Default publish setting has the same property values as
the Factory Default publish settings. Update and save your most commonly
used property settings to avoid having to reset the same settings each time
you create a publish configuration.

For example, suppose that you frequently publish your files using the factory
installed User Default settings, with a few exceptions. You want to change
the factory installed User Default settings to:

• Save the output files to I:\my_MATLAB_files\my_published_files

• Use the getframe figure capture method

• Terminate publishing if an error occurs while the MATLAB code is being
evaluated

Update the User Default publish settings, as follows:

1 If the Edit Configurations dialog box is not already open, click the down
arrow on the Publish button , and then click the configuration for
which you want to set the properties as described in the preceding list.

2 From the Publish settings drop-down list, select User Default.

If the Change Publish Settings dialog box opens, click Change to User
Default.

3 Adjust the values in the publish settings properties table, so that the
Publish settings appear as shown in the following figure.

11-90



Specifying Output Preferences for Publishing

4 Click Save As.

The Save Publish Settings dialog box opens.

5 In the Publish settings drop-down list, select User Default, and then
click Overwrite.

The User Default publish settings are saved with the specified property
values.

Now, suppose you want to create a publish configuration using all the same
settings, except you want to publish your file to a Microsoft Word document.
Follow these steps:

1 In the Editor, open the file that you want to publish to a Word document.

11-91



11 Publishing MATLAB® Code

2 Click the down arrow next to the Publish button on the Editor toolbar
and click Edit Publish Configuration for file name, where the file
name is the name of the file that you want to publish to a Word document.

The Edit Configurations dialog box opens. Notice that the Publish
settings is User Default and the publish settings properties table
contains the values you set in the preceding list of steps.

3 If you want, adjust the MATLAB expression.

4 Change the Output file format from html to doc.

5 Click Save As.

The Save Publish Settings dialog box opens.

6 In the Settings name box, type a name for the new group of publish
settings. For example, WordDefault.

7 Click Save.

Now you can use any one of the following publish settings as the basis for new
publish settings, for the next publish configuration you create:

• Factory Default

• Your customized User Default

• Word Default

• Any other publish settings that you create and save with a unique name

Running an Existing Publish Configuration
After creating a publish configuration, you can run the configuration without
opening the Edit Configurations dialog box, as follows:

1 In the Editor toolbar, click the down arrow on the Publish button , and
position the mouse pointer on a publish configuration name. MATLAB
displays a Tooltip showing the publish configuration’s MATLAB expression
so you can see what will be evaluated when you publish the file using the
named configuration.

11-92



Specifying Output Preferences for Publishing

2 To use the publish configuration, select a configuration name. MATLAB
publishes the file using the MATLAB expression you specified in the
publish configuration. For example, if you select sine_wave_f, MATLAB
sets the value of the input argument, x, to 0:1:6*pi and passes it to the
MATLAB function before evaluating and publishing the file. (To see how
to set the MATLAB expression, see “Creating a Publish Configuration
for a MATLAB File” on page 11-66.)

Creating Multiple Publish Configurations for a File
You can create multiple publish configurations for a given file. You might
do this to publish the file with different values for input arguments,
with different publish setting property values, or both. Create a named

11-93



11 Publishing MATLAB® Code

configuration for each purpose, all associated with the same file. Then, any
time you publish the file, you can choose and run whichever particular publish
configuration that you want. For example, for sine_wave_f(x) you might use
different values for x and adjust publishing properties for these purposes:

• For reviewing with colleagues, publish the document to Word. Use publish
settings to adjust the size of images generated by the code so they are not
cropped in the document. Evaluate and include the code, as well as any
errors generated by the code in the Word document.

• For inclusion in a blog, publish the document to HTML. Use publish
settings to:

- Specify an argument value.

- Set publishing properties to evaluate and include the code in the output
published to HTML.

- Set publishing properties to exclude errors generated by the code from
the output published to HTML.

• For presentation at a meeting, use the same settings as used for publishing
to the blog, but publish to Microsoft PowerPoint.

• For a polished presentation, publish to PDF.

The following sections provide instructions for creating multiple
configurations for sine_wave_f.m.

• “Example of Publishing sine_wave_f.m to Microsoft Word” on page 11-94

• “Steps for Publishing sine_wave_f.m to HTML” on page 11-97

• “Steps for Publishing sine_wave_f.m to Microsoft® PowerPoint” on page
11-100

• “Steps for Publishing sine_wave_f.m to PDF” on page 11-102

Example of Publishing sine_wave_f.m to Microsoft Word
The following steps provide an example of settings you might use when you
want to publish a file to Word. This example uses the sine_wave_f.m file, the
code for which appears in “Creating a Publish Configuration for a MATLAB
File” on page 11-66.

11-94



Specifying Output Preferences for Publishing

1 Copy sine_wave_f.m to your current folder. If you have write permission
to your current folder, you can type the following in the Command Window
to copy the file from the MATLAB root folder:

copyfile(fullfile(docroot,'techdoc','matlab_env','examples', ...
'sine_wave_f.m'),'.','f')

2 In the Editor, open sine_wave_f.m.

3 Select File > Publish Configuration for sine_wave_f.m > Edit
Publish Configurations for sine_wave.m.

4 Select sine_wave_f in the list of files and configurations, click the down
arrow next to the Add button , and then select Publish Configuration.

11-95



11 Publishing MATLAB® Code

MATLAB creates a publish configuration, sine_wave_f_n where the value
of n depends on the number of publish configurations you have previously
created for sine_wave_f.

5 Rename sine_wave_f_n to sine_wave_word, and replace the default
template expression with the following code:

x = 0:1:rand*pi;
sine_wave_f(x)

6 Change the values for Publish settings, as follows so that the output is a
Word document that includes the code, its output and any errors the code
might generate. The maximum values for the image height and width are
set so that the images are not cropped in the Word document:

a For Output file format, select doc from the drop-down list.

11-96



Specifying Output Preferences for Publishing

b For Image format, select jpeg from the drop-down list.

c For Max image width, type 400.

d For Max image height, type 400.

7 Click Publish to test how the settings affect the Word document.

You can continue to test and change publish settings until you achieve
the results that you want.

Tip In addition to testing that your MATLAB code evaluates as expected
and publishes to Word as expected, consider running the spelling and
grammar checker in Word to be sure that the comments in your code do
not contain typographical or grammatical errors.

8 Optionally, if you plan to reuse these publish settings later, click Save As.
In the Save Publish Settings dialog box, in the Settings name field, type
word_settings, and then click Save.

Steps for Publishing sine_wave_f.m to HTML
These steps provide an example of creating a configuration for sine_wave_f.m,
that publishes the file to HTML. You might do this to publish output for
inclusion in a blog, for example.

1 Copy sine_wave_f.m to your current folder. If you have write permission
to your current folder, you can type the following in the Command Window
to copy the file from the MATLAB root folder:

copyfile(fullfile(docroot,'techdoc','matlab_env','examples', ...
'sine_wave_f.m'),'.','f')

2 In the Editor, open sine_wave_f.m.

3 Select File > Publish Configuration for sine_wave_f.m > Edit
Publish Configurations for sine_wave_f.m.

Select sine_wave_f in the list of files and configurations, click the down
arrow next to the Add button , and then select Publish Configuration.

11-97



11 Publishing MATLAB® Code

4 Select sine_wave_f in the list of files and configurations, click the down
arrow next to the Add button , and then select Publish Configuration.

MATLAB creates a publish configuration, sine_wave_f_n where the value
of n depends on the number of publish configurations you have previously
created for sine_wave_f.

5 In the Publish configuration name field, replace sine_wave_f_n with
sine_wave_html.

6 In the MATLAB expression field, replace the default expression with
the following:

x = 0:1:rand*pi;
sine_wave_f(x)

11-98



Specifying Output Preferences for Publishing

Tip To get a quick view of the expression used in a different configuration,
position the mouse pointer on the name of a different publish configuration
without selecting it. In the following figure, sine_wave_html is selected,
but the mouse pointer is positioned on sine_wave_f. You can see the
MATLAB expression specified for the sine_wave_f configuration in the
Tooltip.

7 Change the values for Publish settings, as follows so that the file
publishes to an HTML document, including the code, its output and any
errors the code might generate. The maximum values for the image height
and width are set so that the images are not cropped in the Word document:

a For Output file format, select html from the drop-down list.

b For Max image width, type 400.

11-99



11 Publishing MATLAB® Code

c For Max image height, type 400.

8 Click Publish to test how the settings affect the HTML document.

You can continue to test and change publish settings until you achieve
the results that you want.

9 Optionally, if you plan to reuse these publish settings later, click Save As.
In the Save Publish Settings dialog box, in the Settings name field, type
html_settings, and then click Save.

Steps for Publishing sine_wave_f.m to Microsoft PowerPoint
These steps provide an example of creating a configuration for sine_wave_f.m,
that publishes the file to Microsoft PowerPoint. You might do this to publish
output for presentation in a meeting, for example.

1 Copy sine_wave_f.m to your current folder. If you have write permission
to your current folder, type the following in the Command Window to copy
the file from the MATLAB root folder:

copyfile(fullfile(docroot,'techdoc','matlab_env','examples', ...
'sine_wave_f.m'),'.','f')

2 In the Editor, open sine_wave_f.m.

3 Select File > Publish Configuration for sine_wave_f.m > Edit
Publish Configurations for sine_wave_f.m.

4 Select sine_wave_f in the list of files and configurations, click the down
arrow next to the Add button , and then select Publish Configuration.

MATLAB creates a publish configuration, sine_wave_f_n where the value
of n depends on the number of publish configurations you have previously
created for sine_wave_f.

11-100



Specifying Output Preferences for Publishing

5 In the Publish configuration name field, replace sine_wave_f_n with
sine_wave_ppt.

6 In the MATLAB expression field, replace the default expression with
the following:

x = 0:1:6*pi;
sine_wave_f(x)

7 Assume for the purposes of a PowerPoint presentation, you do not want
to include the code.

Change the Output file format to ppt and Include code to false.

8 Click Publish to test how the PowerPoint output appears.

11-101



11 Publishing MATLAB® Code

9 Optionally, if you plan to reuse these publish settings later, click Save As.
In the Save Publish Settings dialog box, in the Settings name field, type
ppt_settings, and then click Save.

Steps for Publishing sine_wave_f.m to PDF
This example uses the sine_wave_f.m file, the code for which appears in
“Creating a Publish Configuration for a MATLAB File” on page 11-66.

1 Copy sine_wave_f.m to your current folder. If you have write permission
to your current folder, type the following in the Command Window to copy
the file from the MATLAB root folder:

copyfile(fullfile(docroot,'techdoc','matlab_env','examples', ...
'sine_wave_f.m'),'.','f')

2 Open sine_wave_f.m in the Editor.

edit sine_wave_f.m

3 Select File > Publish Configuration for sine_wave_f.m > Edit
Publish Configurations for sine_wave_f.m.

4 Select sine_wave_f in the list of files and configurations, click the down
arrow next to the Add button , and then select Publish Configuration.

MATLAB creates a publish configuration, sine_wave_f_n, where the value
of n depends on the number of publish configurations you have previously
created for sine_wave_f.

5 In the Publish configuration name field, replace sine_wave_f_n with
sine_wave_pdf.

6 In the MATLAB expression field, replace the default expression with
the following:

x = 0:1:6*pi;
sine_wave_f(x)

7 Change the Output file format to pdf.

11-102



Specifying Output Preferences for Publishing

8 Click Publish to test how the PDF output appears.

Notice that when you publish to PDF, unlike other publishing output
formats, the introductory text appears after the table of contents:

11-103



11 Publishing MATLAB® Code

3�����	%���!
��1�

9 Optionally, if you plan to reuse these publish settings later, click Save As.
In the Save Publish Settings dialog box, in the Settings name field, type
pdf_settings, and then click Save.

About the publish_configurations.m File
When you create one or more publish configurations using the Edit
Configurations dialog box, the Editor updates the publish_configurations.m
file in your preferences folder. (This is the folder that MATLAB returns when
you run the MATLAB prefdir function.)

Although you can port this file from the preferences folder on one system to
another, there can only be one publish_configurations.m file on a system.
Therefore, only do this if you have not already created configurations on the
second system. In addition, because this file might contain references to file
paths, be sure that the specified files and paths exist on the second system.

MathWorks recommends that you not update publish_configurations.m
in the MATLAB Editor or a text editor. Changes that you make using
tools other than the Edit Configurations dialog box might be overwritten
later. Each time you save a configuration using the Edit Configurations
dialog box, MATLAB updates the publish_configurations.m file, as well
as the run_configurations.m file. For more information, see “About the
run_configurations.m File” on page 9-96.

11-104



Specifying Output Preferences for Publishing

Finding Publish Configurations
The method you use to find publish configurations is the same as the one
you use to find run configurations. For details, see “Find Configurations”
on page 9-96.

Removing Publish Configurations
If you no longer need a publish configuration because you do not use it or
because you deleted the file with which it is associated, it is a good practice
to delete the publish configuration. The method you use to delete publish
configurations is the same as the one you use to delete run configurations.
For details, see “Remove Configurations” on page 9-98 for details.

Reassociating and Renaming Publish Configurations
Each publish configuration is associated with a specific file. If you move or
rename the file, redefine the association. If you delete a file, consider deleting
the associated configurations, or associating them with a different file. You
might also need to modify the statements in the configurations so they will
run. The method you use to reassociate and rename publish configurations is
the same as the one you use to reassociate and rename run configurations.
See “Reassociate and Rename Configurations” on page 9-99 for details.

11-105



11 Publishing MATLAB® Code

Summary of Options for Presenting Your Code to Others
In addition to publishing, MATLAB provides other options for presenting
your code to others. The following table summarizes the options and presents
them in order of ease of implementing.

Method Description Output Formats Details

Command line
help

Using comments at the start
of a MATLAB program,
enable the display of help
comments when you type
help function-name or
help class-name in the
Command Window.

• ASCII text See “Adding Help for
Your Program Files” on
page 5-9.

Publish Using comments and basic
markup, publish a document
that includes comment text,
MATLAB code, and code
output.

You can produce numerous
output formats from the
same code.

• XML

• HTML

• LaTeX

• Microsoft Word
(.doc)

• Microsoft
PowerPoint (ppt)

• PDF

See “Overview of
Publishing MATLAB
Code” on page 11-2.

Notebook UsingMicrosoft Word, create
electronic or printed records
of MATLAB sessions, class
notes, textbooks or technical
reports.

You must have Microsoft
Word software installed.

• Microsoft Word
(.doc)

See Chapter 12,
“Creating a MATLAB
Notebook to Publish to
Microsoft Word”

Help Browser
Topics

Create HTML and XML
files to provide your own
MATLAB help topics for
viewing from the MATLAB
Help browser or the Web.

• HTML See “Adding HTML
Help Files to the Help
Browser” on page 5-17

11-106



Summary of Options for Presenting Your Code to Others

Method Description Output Formats Details

Help Browser
Demos

Create HTML files to provide
your own demos, including
videos for viewing from the
MATLAB Help browser.

• Text

• HTML

See “Adding Demos to
the Help Browser” on
page 5-52

MATLAB
Report
Generator

Using MATLAB Report
Generator build complex
reports.

You must have MATLAB
Report Generator software
installed.

• RTF

• PDF

• Word

• HTML

• XML

See MATLAB Report
Generator User’s Guide

11-107



11 Publishing MATLAB® Code

11-108



12

Creating a MATLAB
Notebook to Publish to
Microsoft Word

You can use the notebook command to create electronic or printed records of
MATLAB sessions, class notes, textbooks, or technical reports to Microsoft
Word. This document is known as a MATLAB Notebook. As an alternative,
consider using the MATLAB publish command. For more information, see
Chapter 11, “Publishing MATLAB Code”.

Note The notebook command is available only on Windows systems that have
Microsoft Word installed. For supported versions of Word, see “Configuring
MATLAB notebook” on page 12-28.

• “About MATLAB Notebooks” on page 12-2

• “Defining MATLAB Commands as Input Cells for a MATLAB Notebook” on
page 12-12

• “Evaluating MATLAB Commands in a MATLAB Notebook” on page 12-17

• “Printing and Formatting a MATLAB Notebook” on page 12-23

• “Configuring MATLAB notebook” on page 12-28

• “Notebook Feature Reference” on page 12-30



12 Creating a MATLAB® Notebook to Publish to Microsoft® Word

About MATLAB Notebooks

In this section...

“Contents of MATLAB Notebooks” on page 12-2

“Creating or Opening a MATLAB Notebook” on page 12-2

“Entering Commands in a MATLAB Notebook” on page 12-9

“Protecting the Integrity of Your Workspace in MATLAB Notebooks” on
page 12-10

“Ensuring Data Consistency in MATLAB Notebooks” on page 12-10

“Debugging and MATLAB Notebooks” on page 12-11

Contents of MATLAB Notebooks
Using the notebook command, you can create a Microsoft Word document,
that contains text, MATLAB commands, and the output from MATLAB
commands.

You can think of this document as a record of an interactive MATLAB
session annotated with text, or as a document embedded with live MATLAB
commands and output. This documentation refers to this Microsoft Word
document as a MATLAB Notebook.

Creating or Opening a MATLAB Notebook
This section includes information on performing the following tasks:

• “Issuing the notebook Command from the MATLAB Desktop” on page 12-2

• “Creating a MATLAB Notebook” on page 12-5

• “Opening an Existing MATLAB Notebook” on page 12-6

• “Converting a Word Document to a MATLAB Notebook” on page 12-7

Issuing the notebook Command from the MATLAB Desktop
To create a MATLAB Notebook from within MATLAB desktop, type the
following in the Command Window:

12-2



About MATLAB® Notebooks

notebook

If you are running notebook for the first time, you might need to configure it.
See “Configuring MATLAB notebook” on page 12-28 for more information.

The notebook command starts Word on your system and creates a MATLAB
Notebook, called Document1.

When Word is opening, if a dialog box appears asking you to enable or disable
macros, choose to enable macros. The notebook command defines Microsoft
Word macros that enable MATLAB to interpret the different types of cells
that hold MATLAB commands and their output. For more information on
macro security, see “Configuring MATLAB notebook” on page 12-28.

Depending on the version of Word you are using, one of the following occurs:

• In Word 2002, and 2003, notebook adds the Notebook menu to the Word
menu bar, as shown in the following illustration.

12-3



12 Creating a MATLAB® Notebook to Publish to Microsoft® Word

• In Word 2007, notebook adds the Notebook menu to the Word Add-Ins
tab, as shown in the following illustration.

12-4



About MATLAB® Notebooks

Microsoft product screen shot reprinted with permission from Microsoft
Corporation.

Creating a MATLAB Notebook
After issuing the notebook command, you can create a MATLAB Notebook as
follows:

• In Word 2002, and 2003, select File > New M-book

• In Word 2007, select Add-Ins > New M-book, as shown in the following
figure.

12-5



12 Creating a MATLAB® Notebook to Publish to Microsoft® Word

���	������ �������	���

Microsoft product screen shot reprinted with permission from Microsoft
Corporation.

Opening an Existing MATLAB Notebook
You can use the notebook command to open an existing MATLAB Notebook,
as shown in the following code, where filename is the notebook you want
to open.

notebook filename

12-6



About MATLAB® Notebooks

Alternatively, you can double-click a notebook file in a Windows file
management tool, such as Explorer.

When you double-click a notebook, Microsoft Word opens it and starts
MATLAB if it is not already running. The Notebook menu appears on the
Word menu bar and New M-book appears on the File menu, as shown in
the figure that follows.

Converting a Word Document to a MATLAB Notebook
To convert a Word document to a MATLAB Notebook, you insert it into a
notebook file, as described in the steps that follow. Choose the set of steps
that corresponds to the version of Word you are using:

• “Microsoft Word 2002, or 2003” on page 12-8

12-7



12 Creating a MATLAB® Notebook to Publish to Microsoft® Word

• “Microsoft Word 2007” on page 12-8

Microsoft Word 2002, or 2003.

1 Create a MATLAB Notebook.

For details, see “Creating or Opening a MATLAB Notebook” on page 12-2.

2 From the Insert menu, select File.

3 Select the file you want to convert.

4 Click OK.

Microsoft Word 2007.

1 Create a MATLAB Notebook.

For details, see “Creating or Opening a MATLAB Notebook” on page 12-2.

2 From the Insert tab, in the Text group, click the arrow next to Object.

3 Select Text from File, as shown in the image that follows.

The Insert File dialog box opens.

4 In the Insert File dialog box, select the file that you want to convert, and
then click OK.

12-8



About MATLAB® Notebooks

Microsoft product screen shot reprinted with permission from Microsoft
Corporation.

Entering Commands in a MATLAB Notebook

Note A good way to learn how to use notebook is to open the sample MATLAB
Notebook, Readme.doc, and try out the various techniques described in this
section. You can find this file in the matlabroot/notebook/pc folder.

You enter MATLAB commands in a notebook the same way you enter text
in any other Word document. For example, you can enter the following text
in a Word document. The example uses text in Courier Font but you can
use any font:

Here is a sample MATLAB Notebook.

a = magic(3)

12-9



12 Creating a MATLAB® Notebook to Publish to Microsoft® Word

To execute the MATLAB magic command in this document, follow the steps
described in these sections:

• “Defining MATLAB Commands as Input Cells for a MATLAB Notebook” on
page 12-12

• “Evaluating MATLAB Commands in a MATLAB Notebook” on page 12-17

MATLAB displays the output of the command in the Word document in an
output cell.

Protecting the Integrity of Your Workspace in MATLAB
Notebooks
When you work on more than one MATLAB Notebook in a single
word-processing session, note that:

• Each notebook uses the same “copy” of MATLAB.

• All notebooks share the same workspace.

If you use the same variable names in more than one notebook, data used
in one notebook can be affected by another notebook. You can protect the
integrity of your workspace by specifying the clear command as the first
autoinit cell in the notebook.

Ensuring Data Consistency in MATLAB Notebooks
You can think of a MATLAB Notebook as a sequential record of a MATLAB
session. When executed in order, from the first MATLAB command to the last,
the notebook accurately reflects the relationships among these commands.

If, however, you change an input cell or output cell as you refine your
notebook, it can contain inconsistent data. Input cells that depend on
either the contents or the results of the changed cells do not automatically
recalculate when you make a change.

When working on a notebook, consider selecting Evaluate M-book
periodically to ensure that your notebook data is consistent. You can also
use calc zones to isolate related commands in a section of the notebook, and

12-10



About MATLAB® Notebooks

then use Evaluate Calc Zone to execute only those input cells contained
in the calc zone.

Debugging and MATLAB Notebooks
Do not use debugging functions or the Editor while evaluating cells within a
MATLAB Notebook. Instead:

1 Complete debugging files from within MATLAB.

2 Clear all the breakpoints.

3 Access the file using notebook.

If you debug while evaluating a notebook, you can experience problems with
MATLAB.

12-11



12 Creating a MATLAB® Notebook to Publish to Microsoft® Word

Defining MATLAB Commands as Input Cells for a MATLAB
Notebook

In this section...

“Defining Input Cells for a MATLAB Notebook” on page 12-12

“Defining Cell Groups for a MATLAB Notebook” on page 12-13

“Defining Autoinit Input Cells for a MATLAB Notebook” on page 12-14

“Defining Calc Zones for a MATLAB Notebook” on page 12-14

“Converting an Input Cell to Text in a MATLAB Notebook” on page 12-15

For information about evaluating the input cells you define, see “Evaluating
MATLAB Commands in a MATLAB Notebook” on page 12-17.

Defining Input Cells for a MATLAB Notebook
To define a MATLAB command in a Word document as an input cell, follow
these steps:

1 Type the command into the MATLAB Notebook as text. For example,

This is a sample MATLAB Notebook.

a = magic(3)

2 Position the cursor anywhere in the command, and then select
Notebook > Define Input Cell or press Alt+D. If the command is
embedded in a line of text, use the mouse to select it. This defines the
MATLAB command as an input cell:

This is a sample MATLAB Notebook.

[a = magic(3)]

Note how the character font of the text in the input cell changes to a bold,
dark green color and appears within cell markers. Cell markers are bold, gray
brackets. They differ from the brackets used to enclose matrices by their

12-12



Defining MATLAB® Commands as Input Cells for a MATLAB® Notebook

size and weight. For information about changing these default formats, see
“Modifying Styles in the MATLAB Notebook Template” on page 12-23.

Defining Cell Groups for a MATLAB Notebook
You can collect several input cells into a single input cell. This is called a cell
group. Because all the output from a cell group appears in a single output cell
immediately after the group, cell groups are useful when you need several
MATLAB commands. For instance, to define a graphic fully.

If you define all the MATLAB commands that produce a graphic as a cell
group, and then evaluate that cell group, it generates a single graphic that
includes all the graphic components defined in the commands. If instead you
define all the MATLAB commands that generate the graphic as separate
input cells, evaluating the cells generates multiple graphic output cells.

See “Evaluating Cell Groups” on page 12-18 for information about evaluating
a cell group. For information about ungrouping a cell group, see “Ungroup
Cells” on page 12-37.

Creating a Cell Group
To create a cell group:

1 Use the mouse to select the input cells that are to make up the group.

2 Select Notebook > Group Cells or press Alt+G.

The selected cells convert into a cell group and cell markers convert to a single
pair that surrounds the group:

This is a sample cell group.

[date
a = magic(3) ]

Note the following:

• A cell group cannot contain output cells. If the selection includes output
cells, they are deleted.

12-13



12 Creating a MATLAB® Notebook to Publish to Microsoft® Word

• A cell group cannot contain text. If the selection includes text, the text
appears after the cell group. However, if the text precedes the first input
cell in the selection, it remains where it is.

• If you select part or all of an output cell, but not its input cell, the cell
group still includes the input cell.

When you create a cell group, it is an input cell, unless its first line is an
autoinit cell. In that case, the group is an autoinit cell.

Defining Autoinit Input Cells for a MATLAB Notebook
You can use autoinit cells to specify MATLAB commands be evaluated
automatically each time a MATLAB Notebook opens. This is a quick and
easy way to initialize the workspace. Autoinit cells are input cells with the
following additional characteristics:

• The autoinit cells evaluate when MATLAB Notebook opens.

• The commands in autoinit cells display in dark blue characters.

Autoinit cells are otherwise identical to input cells.

Creating an Autoinit Cell for a MATLAB Notebook
You can create an autoinit cell in one of the following two ways:

• Enter the MATLAB command as text, then convert the command to an
autoinit cell by selecting Notebook > Define AutoInit Cell.

• If you already entered the MATLAB command as an input cell, you can
convert the input cell to an autoinit cell. Either select the input cell or
position the cursor in the cell, then select Notebook > Define AutoInit
Cell.

See “Evaluating MATLAB Commands in a MATLAB Notebook” on page 12-17
for information about evaluating autoinit cells.

Defining Calc Zones for a MATLAB Notebook
You can partition a MATLAB Notebook into self-contained sections, called
calc zones. A calc zone is a contiguous block of text, input cells, and output

12-14



Defining MATLAB® Commands as Input Cells for a MATLAB® Notebook

cells. Section breaks appear before and after the section, defining the calc
zone. The section break indicators include bold, gray brackets to distinguish
them from standard Word section breaks.

You can use calc zones to prepare problem sets, making each problem a
separate calc zone that can be created and tested on its own. A notebook
can contain any number of calc zones.

Note Using calc zones does not affect the scope of the variables in a notebook.
Variables used in one calc zone are accessible to all calc zones.

Creating a Calc Zone
After you create the text and cells that you want to include in the calc zone,
define the calc zone by following these steps:

1 Select the input cells and text you want to include in the calc zone.

2 Select Notebook > Define Calc Zone.

Note Select an input cell and its output cell in their entirety to include them
in the calc zone.

See “Evaluating a Calc Zone” on page 12-20 for information about evaluating
a calc zone.

Converting an Input Cell to Text in a MATLAB
Notebook
To convert an input cell (or an autoinit cell or a cell group) to text, follow
these steps:

1 Select the input cell with the mouse or position the cursor in the input cell.

2 Select Notebook > Undefine Cells or press Alt+U.

12-15



12 Creating a MATLAB® Notebook to Publish to Microsoft® Word

When the cell converts to text, the cell contents reformat according to the
Microsoft Word Normal style. For more information about MATLAB Notebook
styles, see “Modifying Styles in the MATLAB Notebook Template” on page
12-23. When you convert an input cell to text, the corresponding output cell
also converts to text.

12-16



Evaluating MATLAB® Commands in a MATLAB® Notebook

Evaluating MATLAB Commands in a MATLAB Notebook

In this section...

“Evaluating Input Commands” on page 12-17

“Evaluating Cell Groups” on page 12-18

“Evaluating a Range of Input Cells” on page 12-20

“Evaluating a Calc Zone” on page 12-20

“Evaluating an Entire MATLAB Notebook” on page 12-20

“Using a Loop to Evaluate Input Cells Repeatedly” on page 12-21

“Converting Output Cells to Text” on page 12-22

“Deleting Output Cells” on page 12-22

Evaluating Input Commands
After you define a MATLAB command as an input cell, or as an autoinit cell,
you can evaluate it in your MATLAB Notebook. Use the following steps to
define and evaluate a MATLAB command:

1 Type the command into the notebook as text. For example:

This is a sample MATLAB Notebook

a = magic(3)

2 Position the cursor anywhere in the command. If the command is embedded
in a line of text, use the mouse to select it. Then select Notebook > Define
Input Cell or press Alt+D.

The MATLAB command becomes an input cell. For example:

This is a sample MATLAB Notebook

[a = magic(3)]

12-17



12 Creating a MATLAB® Notebook to Publish to Microsoft® Word

3 Specify the input cell you want to evaluate by selecting it with the mouse
or by placing the cursor in it. Then select Notebook > Evaluate Cell
or press Ctrl+Enter.

The input cell is evaluated and the results display in an output cell
immediately following the input cell. If there is already an output cell, its
contents refresh or update, wherever the output cell is in the notebook.
For example:

This is a sample MATLAB Notebook.

[a = magic(3) ]

[a =
8 1 6
3 5 7
4 9 2 ]

The text in the output cell is blue and is enclosed within cell markers. Cell
markers are bold, gray brackets. They differ from the brackets that enclose
matrices in their size and weight. Error messages appear in red. For
information about changing these default formats, see “Modifying Styles in
the MATLAB Notebook Template” on page 12-23.

Evaluating Cell Groups
You evaluate a cell group the same way you evaluate an input cell (because a
cell group is an input cell), as follows:

1 Position the cursor anywhere in the cell or in its output cell.

2 Select Notebook > Evaluate Cell or press Ctrl+Enter.

For information about creating a cell group, see “Defining Cell Groups for a
MATLAB Notebook” on page 12-13.

When MATLAB evaluates a cell group, the output for all commands in the
group appears in a single output cell. By default, the output cell appears
immediately after the cell group the first time the cell group is evaluated. If

12-18



Evaluating MATLAB® Commands in a MATLAB® Notebook

you evaluate a cell group that has an existing output cell, the results appear
in that output cell, wherever it is located in the MATLAB Notebook.

Note Text or numeric output always comes first, regardless of the order of
the commands in the group.

The following illustration shows a cell group and the figure created when
you evaluate the cell group.

12-19



12 Creating a MATLAB® Notebook to Publish to Microsoft® Word

Evaluating a Range of Input Cells
To evaluate more than one MATLAB command contained in different but
contiguous input cells, follow these steps:

1 Select the range of cells that includes the input cells you want to evaluate.
You can include text that surrounds input cells in your selection.

2 Select Notebook > Evaluate Cell or press Ctrl+Enter.

Each input cell in the selection evaluates, new output cells appear or existing
ones are replaced.

Evaluating a Calc Zone
To evaluate a calc zone, follow these steps:

1 Position the cursor anywhere in the calc zone.

2 Select Notebook > Evaluate Calc Zone or press Alt+Enter.

For information about creating a calc zone, see “Defining Calc Zones for a
MATLAB Notebook” on page 12-14.

By default, the output cell appears immediately after the calc zone the first
time the calc zone is evaluated. If you evaluate a calc zone with an existing
output cell, the results appear in the output cell wherever it is located in the
MATLAB Notebook.

Evaluating an Entire MATLAB Notebook
To evaluate an entire MATLABNotebook, either selectNotebook > Evaluate
M-book or press Alt+R.

Evaluation begins at the top of the notebook, regardless of the cursor position
and includes each input cell in the file. As it evaluates the file, notebook
inserts new output cells or replaces existing output cells.

12-20



Evaluating MATLAB® Commands in a MATLAB® Notebook

Controlling Execution of Multiple Commands
When you evaluate an entire MATLAB Notebook, and an error occurs,
evaluation continues. If you want to stop evaluation if an error occurs:

1 Select Notebook > Notebook Options.

The Notebook Options dialog box opens.

2 Select the Stop evaluating on error check box, and then click OK.

Using a Loop to Evaluate Input Cells Repeatedly
To evaluate a sequence of MATLAB commands repeatedly, follow these steps:

1 Use the mouse to select the input cells, including any text or output cells
located between them.

2 Select Notebook > Evaluate Loop or press Alt+L. The Evaluate Loop
dialog box displays.

3 Enter the number of times you want to evaluate the selected commands
in the Stop After field, then click Start. The button changes to Stop.
Command evaluation begins, and the number of completed iterations
appears in the Loop Count field.

You can increase or decrease the delay at the end of each iteration by clicking
Slower or Faster. Slower increases the delay. Faster decreases the delay.

12-21



12 Creating a MATLAB® Notebook to Publish to Microsoft® Word

To suspend evaluation of the commands, click Pause. The button changes to
Resume. Click Resume to continue evaluation.

To stop processing the commands, click Stop. To close the Evaluate Loop
dialog box, click Close.

Converting Output Cells to Text
You can convert an output cell to text by undefining cells. If the output is
numeric or textual, the cell markers disappear and the cell contents convert to
text according to the Microsoft Word Normal style. If the output is graphical,
the cell markers disappear and the graphic dissociates from its input cell, but
contents of the graphic do not change.

Note Undefining an output cell does not affect the associated input cell.

To undefine an output cell, follow these steps:

1 Select the output cell you want to undefine.

2 Select Notebook > Undefine Cells or press Alt+U.

Deleting Output Cells
To delete output cells, follow these steps:

1 Select an output cell, using the mouse, or place the cursor in the output cell.

2 Select Notebook > Purge Selected Output Cells or press Alt+P.

If you select a range of cells, all the output cells in the selected range
disappear, but any associated input cells remain intact.

12-22



Printing and Formatting a MATLAB® Notebook

Printing and Formatting a MATLAB Notebook

In this section...

“Printing a MATLAB Notebook” on page 12-23

“Modifying Styles in the MATLAB Notebook Template” on page 12-23

“Choosing Loose or Compact Format” on page 12-24

“Controlling Numeric Output Format” on page 12-25

“Controlling Graphic Output” on page 12-25

Printing a MATLAB Notebook
You can print all or part of a MATLAB Notebook by doing one of the following,
depending on the version of Microsoft Word you are using:

• In Microsoft Word 2002, 2003 — Select File > Print.

• In Microsoft Word 2007 — SelectMicrosoft Office Button > Print

Word follows these rules when printing MATLAB Notebook cells and graphics:

• Cell markers do not print.

• Input cells, autoinit cells, and output cells (including error messages) print
according to their defined styles. If you prefer to print these cells using
black type instead of colors or shades of gray, you can modify the styles.

Modifying Styles in the MATLAB Notebook Template
You can control the appearance of the text in your MATLAB Notebook by
modifying the predefined styles stored in the notebook template, m-book.dot.
These styles control the appearance of text and cells. By default, notebooks
use the Word Normal style for all other text.

For example, if you print a notebook on a color printer, input cells appear dark
green, output and autoinit cells appear dark blue, and error messages appear
red. If you print the notebook on a grayscale printer, these cells appear as
shades of gray. To print these cells using black type, modify the color of the
Input, Output, AutoInit, and Error styles in the notebook template.

12-23



12 Creating a MATLAB® Notebook to Publish to Microsoft® Word

The following table describes the default styles used by MATLAB Notebook. If
you modify styles, you can use the information in the table to help you return
the styles to their original settings. For general information about using
styles in Word documents, see the Word documentation.

Style Font Size Weight Color

Normal Times New
Roman

10 points N/A Black

AutoInit Courier New 10 points Bold Dark blue

Error Courier New 10 points Bold Red

Input Courier New 10 points Bold Dark green

Output Courier New 10 points N/A Blue

When you change a style, Word applies the change to all characters in the
notebook that use that style and gives you the option to change the template.
Be cautious about changing the template. If you choose to apply the changes
to the template, you affect all new notebooks that you create using the
template. See the Word documentation for more information.

Choosing Loose or Compact Format
You can specify whether a blank line appears between the input and output
cells by selecting the loose or compact format, as follows:

1 Select Notebook > Notebook Options.

2 In the Notebook Options dialog box, select either Loose or Compact.
Loose format adds an empty line. Compact format does not.

3 Click OK.

Note Changes you make using the Notebook Options dialog box take effect
for output generated after you click OK. To affect existing input or output
cells, reevaluate the cells.

12-24



Printing and Formatting a MATLAB® Notebook

Controlling Numeric Output Format
To change how numeric output displays, follow these steps:

1 Select Notebook > Notebook Options.

2 In the Notebook Options dialog box, select a format from the Numeric
Format list. These settings correspond to the choices available with the
MATLAB format command.

3 Click OK.

Note Changes you make using the Notebook Options dialog box take effect
for output generated after you click OK. To affect existing input or output
cells, reevaluate the cells.

Controlling Graphic Output
This section describes how to control several aspects of the graphic output
produced by MATLAB commands in a MATLAB Notebook, including

• “Embedding Graphic Output in a MATLAB Notebook” on page 12-25

• “Suppressing Graphic Output for Individual Input Cells” on page 12-26

• “Adjusting Graphic Output” on page 12-27

Embedding Graphic Output in a MATLAB Notebook
By default, graphic output is embedded in a MATLAB Notebook. To display
graphic output in a separate figure window, follow these steps:

1 Select Notebook > Notebook Options.

2 In the Notebook Options dialog box, clear the Embed Figures in
M-book check box.

12-25



12 Creating a MATLAB® Notebook to Publish to Microsoft® Word

3 Click OK.

Note Embedded figures do not include Handle Graphics objects generated by
the uicontrol and uimenu functions.

Whether to embed a figure in the MATLAB Notebook is determined by the
value of the figure object’s Visible property. If the value of the property is
off, the figure embeds in the notebook. If the value of this property is on, all
graphic output appears in the current figure window.

Suppressing Graphic Output for Individual Input Cells
If an input or autoinit cell generates figure output that you want to suppress,
follow these steps:

1 Place the cursor in the input cell.

2 Select Notebook > Toggle Graph Output for Cell.

Graphic output from the cell does not appear, and the string (no graph)
appears after the input cell.

To allow graphic output for a cell, repeat the procedure. The (no graph)
marker disappears and graphic output from the cell appears.

12-26



Printing and Formatting a MATLAB® Notebook

Note Toggle Graph Output for Cell overrides the Embed Figures in
M-book option, if that option is set.

Adjusting Graphic Output
To set the default size of embedded graphics in a MATLAB Notebook, follow
these steps:

1 Select Notebook > Notebook Options.

2 In the Notebook Options dialog box, use the Units, Width and Height
fields to set the size of graphics generated by the notebook.

3 Click OK.

Note Changes you make using the Notebook Options dialog box take effect
for graphic output generated after you click OK. To affect existing input or
output cells, reevaluate the cells.

Change the size of an existing embedded figure by selecting the figure,
clicking the left mouse button anywhere in the figure, and then dragging the
resize handles of the figure. If you resize an embedded figure using its resize
handles and then regenerate the figure, its size reverts to its original size.

To crop graphic output, or add white space around it, follow the instructions
for performing these tasks in Microsoft Word. See the Microsoft Word help for
details.

12-27



12 Creating a MATLAB® Notebook to Publish to Microsoft® Word

Configuring MATLAB notebook

After you install MATLAB Notebook software, but before you begin using it,
specify that Word can use the notebookmacros, and then configure notebook.
(The notebook program installs as part of the MATLAB installation process
on Microsoft Windows platforms. For more information, see the MATLAB
installation documentation.)

To specify that Word can use the notebook macros:

• In Word 2002, and 2003 do either of the following:

- Set the macro security level to medium: in Word, select
Tools > Macros > Security, and in the resulting dialog box, choose
Medium.

- After running notebook, when Word first opens, a security warning
dialog box appears. In the dialog box, select Always trust macros from
this source. This allows you to use MATLAB Notebook features, but
still maintain a high security level for other macros you use in Word.

• In Word 2007, follow the Word help instructions in the topic entitled
“Enable or disable macros in Office documents.”

To configure MATLAB Notebook software:

1 Type notebook in the MATLAB Command Window.

MATLAB opens a dialog box that indicates notebook has not been
configured and asks if you want to configure it now.

2 Click Yes.

MATLAB configures MATLAB Notebook software and issues the following
messages in the Command Window:

Welcome to the utility for setting up the MATLAB Notebook
for interfacing MATLAB to Microsoft Word

Setup complete
Warning: MATLAB is now an automation server

12-28



Configuring MATLAB® notebook

When MATLAB configures the software, it:

a Accesses the Microsoft Windows system registry to locate Microsoft Word
and the Word templates folder. It also identifies the version of Word.

b Copies the m-book.dot template to the Word templates folder
The MATLAB Notebook software supports Word versions 2002, 2003, and
2007.

If you have previously configured the software, typing notebook in the
MATLAB Command Window, starts Microsoft Word and creates a MATLAB
Notebook. The Command Window displays the message Warning: MATLAB
is now an automation server.

If you suspect a problem with the current configuration, you can explicitly
configure the software by typing:

notebook ('-setup')

12-29



12 Creating a MATLAB® Notebook to Publish to Microsoft® Word

Notebook Feature Reference

In this section...

“Bring MATLAB to Front” on page 12-30

“Define Autoinit Cell” on page 12-31

“Define Calc Zone” on page 12-31

“Define Input Cell” on page 12-32

“Evaluate Calc Zone” on page 12-32

“Evaluate Cell” on page 12-33

“Evaluate Loop” on page 12-34

“Evaluate M-Book” on page 12-34

“Group Cells” on page 12-34

“Hide Cell Markers” on page 12-35

“Notebook Options” on page 12-35

“Purge Selected Output Cells” on page 12-35

“Toggle Graph Output for Cell” on page 12-36

“Undefine Cells” on page 12-36

“Ungroup Cells” on page 12-37

This section provides reference information about each of the MATLAB
Notebook features, listed alphabetically. To use these features, select them
from the Notebook menu in Microsoft Word. (In Word 2007, the Notebook
menu is on the Add-Ins tab.)

Bring MATLAB to Front
Bring MATLAB to Front brings the MATLAB Command Window to the
foreground.

12-30



Notebook Feature Reference

Define Autoinit Cell
Define AutoInit Cell creates an autoinit cell by converting the current
paragraph, selected text, or input cell. An autoinit cell is an input cell that is
automatically evaluated whenever you open a MATLAB Notebook.

Result
If you select this feature while the cursor is in a paragraph of text, the entire
paragraph converts to an autoinit cell. If you select this feature while text is
selected, the text converts to an autoinit cell. If you select this feature while
the cursor is in an input cell, the input cell converts to an autoinit cell.

Format
The autoinit cell format uses the AutoInit style, defined as bold, dark blue,
10-point Courier New.

See Also
For more information about autoinit cells, see “Defining Autoinit Input Cells
for a MATLAB Notebook” on page 12-14.

Define Calc Zone
Define Calc Zone defines the selected text, input cells, and output cells as a
calc zone. A calc zone is a contiguous block of related text, input cells, and
output cells that describes a specific operation or problem.

Result
A calc zone is defined as a Word document section. Section breaks appear
before and after the calc zone. However, Word does not display section breaks
at the beginning or end of a document.

See Also
For information about evaluating calc zones, see “Evaluating a Calc Zone” on
page 12-20. For more information about document sections, see the Microsoft
Word documentation.

12-31



12 Creating a MATLAB® Notebook to Publish to Microsoft® Word

Define Input Cell
Define Input Cell creates an input cell by converting the current paragraph,
selected text, or autoinit cell. An input cell contains a MATLAB command.

Result
If you select this feature while the cursor is in a paragraph of text, the entire
paragraph converts to an input cell. If you select this feature while text is
selected, the text converts to an input cell. If you select this feature while the
cursor is in an autoinit cell, the autoinit cell converts to an input cell.

Format
The text appears enclosed in cell markers and the cell uses the Input style,
defined as bold, dark green, 10-point Courier New.

See Also
For more information about creating input cells, see “Defining MATLAB
Commands as Input Cells for a MATLAB Notebook” on page 12-12. For
information about evaluating input cells, see “Evaluating MATLAB
Commands in a MATLAB Notebook” on page 12-17.

Evaluate Calc Zone
Evaluate Calc Zone sends the input cells in the current calc zone to
MATLAB for evaluation. The current calc zone is the Word section that
contains the cursor.

Result
As each input cell evaluates, it generates an output cell. When you evaluate
an input cell for which there is no output cell, the output cell appears
immediately after the input cell that generated it. If you evaluate an input
cell for which there is an output cell, the results in the output cell are
replaced, wherever it is in the MATLAB Notebook.

See Also
For more information, see “Evaluating a Calc Zone” on page 12-20.

12-32



Notebook Feature Reference

Evaluate Cell
Evaluate Cell sends the current input cell or cell group to MATLAB for
evaluation. An input cell contains a MATLAB command. A cell group is a
single, multiline input cell that contains more than one MATLAB command.
The output or an error message displays in an output cell.

Result
If you evaluate an input cell for which there is no output cell, the output cell
appears immediately after the input cell that generated it. If you evaluate an
input cell for which there is an output cell, the results in the output cell are
replaced, wherever that cell is in the MATLAB Notebook. If you evaluate a
cell group, all output for the cell appears in a single output cell.

An input cell or cell group is the current input cell or cell group if

• The cursor is in the input cell or cell group.

• The cursor is at the end of the line that contains the closing cell marker for
the input cell or cell group.

• The cursor is in the output cell for the input cell or cell group.

• The input cell or cell group is selected.

Note Evaluating a cell that involves a lengthy operation can cause a time-out.
If this happens, Word displays a time-out message and asks whether you
want to continue waiting for a response or terminate the request. If you
choose to continue, Word resets the time-out value and continues waiting for
a response. Word sets the time-out value; you cannot change it.

See Also
For more information, see “Evaluating MATLAB Commands in a MATLAB
Notebook” on page 12-17. For information about evaluating the entire
MATLAB Notebook, see “Evaluating an Entire MATLAB Notebook” on page
12-20.

12-33



12 Creating a MATLAB® Notebook to Publish to Microsoft® Word

Evaluate Loop
Evaluate Loop evaluates the selected input cells repeatedly.

For more information, see “Using a Loop to Evaluate Input Cells Repeatedly”
on page 12-21.

Evaluate M-Book
Evaluate M-book evaluates the entire MATLAB Notebook, sending all input
cells to MATLAB for evaluation. Evaluation begins at the top of the MATLAB
Notebook regardless of the cursor position.

Result
As each input cell evaluations, it generates an output cell. When you evaluate
an input cell for which there is no output cell, the output cell appears
immediately after the input cell that generated it. If you evaluate an input
cell for which there is an output cell, the results are replaced in the output
cell wherever it is in the MATLAB Notebook.

See Also
For more information, see “Evaluating an Entire MATLAB Notebook” on
page 12-20.

Group Cells
Group Cells converts the input cells in the selection into a single multiline
input cell called a cell group. You evaluate a cell group using Evaluate
Cell. When you evaluate a cell group, all of its output follows the group and
appears in a single output cell.

Result
If you include text in the selection, it appears after the cell group. However,
if text precedes the first input cell in the group, the text remains before the
group.

12-34



Notebook Feature Reference

If you include output cells in the selection, they disappear. If you select all
or part of an output cell before selecting this feature, its input cell appears
in the cell group.

If the first line in the cell group is an autoinit cell, the entire group acts as a
sequence of autoinit cells. Otherwise, the group acts as a sequence of input
cells. You can convert an entire cell group to an autoinit cell by using Define
AutoInit Cell.

See Also
For more information, see “Defining Cell Groups for a MATLAB Notebook” on
page 12-13. For information about converting a cell group to individual input
cells, see “Ungroup Cells” on page 12-37.

Hide Cell Markers
Hide Cell Markers hides cell markers in the MATLAB Notebook.

When you select this feature, it changes to Show Cell Markers.

Note Cell markers do not print whether you choose to hide them or show
them on the screen.

Notebook Options
Notebook Options allows you to examine and modify display options for
numeric and graphic output.

See Also
See “Printing and Formatting a MATLAB Notebook” on page 12-23 for more
information.

Purge Selected Output Cells
Purge Selected Output Cells deletes all output cells from the current
selection.

12-35



12 Creating a MATLAB® Notebook to Publish to Microsoft® Word

See Also
For more information, see “Deleting Output Cells” on page 12-22.

Toggle Graph Output for Cell
Toggle Graph Output for Cell suppresses or allows graphic output from
an input cell.

If an input or autoinit cell generates figure output that you want to suppress,
place the cursor in the input cell and choose this feature. The string (no
graph) appears after the input cell to indicate that graph output for that
cell will be suppressed.

To allow graphic output for that cell, place the cursor inside the input cell
and choose Toggle Graph Output for Cell again. The (no graph) marker
disappears. This feature overrides the Embed Figures in M-book option, if
that option is set in the Notebook Options dialog box.

See Also
See “Embedding Graphic Output in a MATLAB Notebook” on page 12-25
and “Suppressing Graphic Output for Individual Input Cells” on page 12-26
for more information.

Undefine Cells
Undefine Cells converts the selected cells to text. If no cells are selected but
the cursor is in a cell, that cell becomes undefined. Cell markers disappear
and the cell reformats according to the Normal style.

If you undefine an input cell, its output cell automatically undefines.
However, if you undefine an output cell, its input cell does not undefine. If you
undefine an output cell containing an embedded graphic, the graphic remains
in the MATLAB Notebook but is no longer associated with an input cell.

See Also
For information about the Normal style, see “Modifying Styles in the
MATLAB Notebook Template” on page 12-23. For information about deleting
output cells, see “Purge Selected Output Cells” on page 12-35.

12-36



Notebook Feature Reference

Ungroup Cells
Ungroup Cells converts the current cell group into a sequence of individual
input cells or autoinit cells. If the cell group is an input cell, the cell group
converts to input cells. If the cell group is an autoinit cell, the cell group
converts to autoinit cells. The output cell for the cell group disappears.

A cell group is the current cell group if:

• The cursor is in the cell group.

• The cursor is at the end of a line that contains the closing cell marker for
the cell group.

• The cursor is in the output cell for the cell group.

• The cell group is selected.

See Also
For information about creating cell groups, see the description of “Defining
Cell Groups for a MATLAB Notebook” on page 12-13.

12-37



12 Creating a MATLAB® Notebook to Publish to Microsoft® Word

12-38



13

Source Control Interface

The source control interface provides access to your source control system
from the MATLAB desktop. Source control systems, also known as version
control, revision control, configuration management, and file management
systems, are platform dependent—the topics for the Microsoft Windows
platforms appear first, followed by the topics for the UNIX platforms.

• “Source Control Interface on Microsoft Windows” on page 13-2

• “Setting Up the Source Control Interface on Microsoft Windows” on page
13-3

• “Checking Files Into and Out of Source Control from the MATLAB Desktop
on Microsoft Windows” on page 13-11

• “Additional Source Control Actions on Microsoft Windows” on page 13-14

• “Performing Source Control Actions from the Editor, Simulink, or Stateflow
File Menu on Microsoft Windows” on page 13-23

• “Troubleshooting Source Control Problems on Microsoft Windows” on page
13-24

• “Source Control Interface on UNIX Platforms” on page 13-26

• “Specifying the Source Control System on UNIX Platforms” on page 13-27

• “Checking Files Into the Source Control System on UNIX Platforms” on
page 13-30

• “Checking Files Out of the Source Control System on UNIX” on page 13-33

• “Undoing the Checkout on UNIX Platforms” on page 13-36



13 Source Control Interface

Source Control Interface on Microsoft Windows
If you use source control systems to manage your files, you can interface
with the systems to perform source control actions from within the MATLAB,
Simulink, and Stateflow® products. Use menu items in the MATLAB,
Simulink, or Stateflow products, or run functions in the MATLAB Command
Window to interface with your source control systems.

The source control interface on Windows works with any source control
system that conforms to the Microsoft Common Source Control standard,
Version 1.1. If your source control system does not conform to the standard,
use a Microsoft Source Code Control API wrapper product for your source
control system so that you can interface with it from the MATLAB, Simulink,
and Stateflow products.

This documentation uses the Microsoft® Visual SourceSafe® software as an
example. Your source control system might use different terminology and not
support the same options or might use them in a different way. Regardless,
you should be able to perform similar actions with your source control system
based on this documentation.

Perform most source control interface actions from the Current Folder
browser. You can also perform many of these actions for a single file from the
MATLAB Editor, a Simulink model window, or a Stateflow chart window—for
more information, see “Performing Source Control Actions from the Editor,
Simulink, or Stateflow File Menu on Microsoft Windows” on page 13-23.
Another way to access many of the source control actions is with the verctrl
function.

13-2



Setting Up the Source Control Interface on Microsoft® Windows®

Setting Up the Source Control Interface on Microsoft
Windows

In this section...

“Create Projects in Source Control System” on page 13-3

“Specify Source Control System with MATLAB Software” on page 13-5

“Register Source Control Project with MATLAB Software” on page 13-7

“Add Files to Source Control” on page 13-10

Create Projects in Source Control System
In your source control system, create the projects that your folders and files
will be associated with.

All files in a folder must belong to the same source control project. Be sure
the working folder for the project in the source control system specifies the
correct path to the folder on disk.

Example of Creating Source Control Project
This example uses the project my_thesis_files in Microsoft Visual
SourceSafe. This illustration of the Current Folder browser shows the path to
the folder on disk, C:\my_thesis_files.

13-3



13 Source Control Interface

The following illustration shows the example project in the source control
system.

13-4



Setting Up the Source Control Interface on Microsoft® Windows®

To set the working folder in Microsoft Visual SourceSafe for this example,
select my_thesis_files, right-click, select Set Working Folder from the
context menu, and specify D:\my_thesis_files in the resulting dialog box.

Specify Source Control System with MATLAB Software
In MATLAB, specify the source control system you want to access. Select
File > Preferences > General > Source Control.

The currently selected system is shown in the Preferences dialog box. The
list includes all installed source control systems that support the Microsoft
Common Source Control standard.

Select the source control system you want to interface with and click OK.

13-5



13 Source Control Interface

MATLAB remembers preferences between sessions, so you only need to
perform this action again when you want to access a different source control
system.

Source Control with 64-Bit Versions of MATLAB
If you run a 64-bit version of MATLAB and want MATLAB to interface
with your source control system, your source control system must be 64-bit
compliant. If you have a 32-bit source control system, or if you have a 64-bit
source control system running in 32-bit compatibility mode, MATLAB cannot
use it. In that event, MATLAB displays a warning about the problem in the
Source Control preference pane.

13-6



Setting Up the Source Control Interface on Microsoft® Windows®

Function Alternative for Specifying Source Control System
A function alternative to select a source control system is not available, but
you can list all available source control systems using verctrl with the
all_systems argument. Use cmopts to display the name of the currently
selected source control system.

Register Source Control Project with MATLAB
Software
Register a source control system project with a folder in MATLAB, that is,
associate a source control system project with a folder and all files in that
folder. Do this only one time for any file in the folder, which registers all
files in that folder:

1 In the MATLAB Current Folder browser, select a file that is in the folder
you want to associate with a project in your source control system. For
example, select D:\my_thesis_files\wind.m. This will associate all files
in the my_thesis_files folder.

2 Right-click, and from the context menu, select Source Control > Register
Name_of_Source_Control_System Project with MATLAB. The
Name_of_Source_Control_System is the source control system you
selected using preferences as described in “Specify Source Control System
with MATLAB Software” on page 13-5.

13-7



13 Source Control Interface

The following example shows Microsoft Visual SourceSafe.

13-8



Setting Up the Source Control Interface on Microsoft® Windows®

3 In the resulting Name_of_Source_Control_System Login dialog box,
provide the user name and password you use to access your source control
system, and click OK.

4 In the resulting Choose project from
Name_of_Source_Control_System dialog box, select the source control
system project to associate with the folder and click OK. This example
shows my_thesis_files.

The selected file, its folder, and all files in the folder, are associated with
the source control system project you selected. For the example, MATLAB
associates all files in D:\my_thesis_files with the source control project
my_thesis_files.

13-9



13 Source Control Interface

Add Files to Source Control
Add files to the source control system. Do this only once for each file:

1 In the Current Folder browser, select files you want to add to the source
control system.

2 Right-click, and from the context menu, select Source Control > Add
to Source Control.

3 The resulting Add to source control dialog box lists files you selected to
add. You can add text in the Comments field. If you expect to use the
files soon, select the Keep checked out check box (which is selected by
default). Click OK.

If you try to add an unsaved file, the file is automatically saved upon adding.

Function Alternative
The function alternative is verctrl with the add argument.

13-10



Checking Files Into and Out of Source Control from the MATLAB® Desktop on Microsoft® Windows®

Checking Files Into and Out of Source Control from the
MATLAB Desktop on Microsoft Windows

In this section...

“Check Files Into Source Control” on page 13-11

“Check Files Out of Source Control” on page 13-12

“Undoing the Checkout” on page 13-13

Before checking files into and out of your source control system from the
MATLAB desktop, be sure to set up your system for use with MATLAB as
described in “Setting Up the Source Control Interface on Microsoft Windows”
on page 13-3.

Check Files Into Source Control
After creating or modifying files using MATLAB software or related products,
check the files into the source control system by performing these steps:

1 In the Current Folder browser, select the files to check in. A file can be
open or closed when you check it in, but it must be saved, that is, it cannot
contain unsaved changes.

2 Right-click, and from the context menu, select Source Control > Check
In.

3 In the resulting Check in file(s) dialog box, you can add text in the
Comments field. If you want to continue working on the files, select the
check box Keep checked out. Click OK.

If a file contains unsaved changes when you try to check it in, you will be
prompted to save the changes to complete the checkin. If you did not keep the
file checked out and you keep the file open, note that it is a read-only version.

Function Alternative
The function alternative is verctrl with the checkin argument.

13-11



13 Source Control Interface

Check Files Out of Source Control
From MATLAB, to check out the files you want to modify, perform these steps:

1 In the Current Folder browser, select the files to check out.

2 Right-click, and from the context menu, select Source Control > Check
Out.

3 The resulting Check out file(s) dialog box lists files you selected to check
out. Enter comment text in the Comments field, which appears if your
source control system supports comments on checkout. Click OK.

After checking out a file, make changes to it in MATLAB or another product,
and save the file. For example, edit a file in the Editor.

If you try to change a file without first having checked it out, the file is
read-only, as seen in the title bar, and you will not be able to save any
changes. This protects you from accidentally overwriting the source control
version of the file.

If you end the MATLAB session, the file remains checked out. You can check
in the file from within MATLAB during a later session, or folder from your
source control system.

13-12



Checking Files Into and Out of Source Control from the MATLAB® Desktop on Microsoft® Windows®

Function Alternative
The function alternative is verctrl with the checkout argument.

Undoing the Checkout
You can undo the checkout for files. The files remain checked in, and do
not have any of the changes you made since you last checked them out.
To save any changes you have made since checking out a particular file
select File > Save As, and supply a different file name before you undo the
checkout.

To undo a checkout, follow these steps:

1 In the MATLAB Current Folder browser, select the files for which you
want to undo the checkout.

2 Right-click, and from the context menu, select Source Control > Undo
Checkout.

The MATLAB Undo checkout dialog box opens, listing the files you
selected.

3 Click OK.

Function Alternative
The function alternative is verctrl with the undocheckout argument.

13-13



13 Source Control Interface

Additional Source Control Actions on Microsoft Windows

In this section...

“Getting the Latest Version of Files for Viewing or Compiling” on page 13-14

“Removing Files from the Source Control System” on page 13-15

“Showing File History” on page 13-16

“Comparing the Working Copy of a File to the Latest Version in Source
Control” on page 13-18

“Viewing Source Control Properties of a File” on page 13-20

“Starting the Source Control System” on page 13-21

Getting the Latest Version of Files for Viewing or
Compiling
You can get the latest version of a file from the source control system for
viewing or running. Getting a file differs from checking it out. When you
get a file, it is write protected so you cannot edit it, but when you check out
a file, you can edit it.

To get the latest version, follow these steps:

1 In the MATLABCurrent Folder browser, select the folders or files that you
want to get. If you select files, you cannot select folders too.

13-14



Additional Source Control Actions on Microsoft® Windows®

2 Right-click, and from the context menu, select Source Control > Get
Latest Version.

The MATLAB Get latest version dialog box opens, listing the files or folders
you selected.

3 Click OK.

You can now open the file to view it, run the file, or check out the file for
editing.

Function Alternative
The function alternative is verctrl with the get argument.

Removing Files from the Source Control System
To remove files from the source control system, follow these steps:

1 In the MATLAB Current Folder browser, select the files you want to
remove.

2 Right-click, and from the context menu, select Source Control > Remove
from Source Control.

The MATLAB Remove from source control dialog box opens, listing
the files you selected.

13-15



13 Source Control Interface

3 Click OK.

Function Alternative
The function alternative is verctrl with the remove argument.

Showing File History
To show the history of a file in the source control system, follow these steps:

1 In the MATLAB Current Folder browser, select the file for which you want
to view the history.

2 Right-click, and from the context menu, select Source Control > History.

13-16



Additional Source Control Actions on Microsoft® Windows®

A dialog box, which is specific to your source control system, opens. For
Microsoft Visual SourceSafe, the History Options dialog box opens, as
shown in the following example illustration.

3 Complete the dialog box to specify the range of history you want for the
selected file and click OK. For example, enter my_name for User.

13-17



13 Source Control Interface

The history presented depends on your source control system. For Microsoft
Visual SourceSafe, the History dialog box opens for that file, showing the
file’s history in the source control system.

Function Alternative
The function alternative is verctrl with the history argument.

Comparing the Working Copy of a File to the Latest
Version in Source Control
You can compare the current working copy of a file with the latest checked-in
version of the file in the source control system. This highlights the differences
between the two files, showing the changes you made since you checked out
the file.

To view the differences, follow these steps:

1 In the MATLAB Current Folder browser, select the file for which you want
to view differences. This is a file that has been checked out and edited.

13-18



Additional Source Control Actions on Microsoft® Windows®

2 Right-click, and from the context menu, select Source
Control > Differences.

A dialog box, which is specific to your source control system, opens. For
Microsoft Visual SourceSafe, the Difference Options dialog box opens.

3 Review the default entries in the dialog box, make any needed changes, and
click OK. The following example is for Microsoft Visual SourceSafe.

The method of presenting differences depends on your source control
system. For Microsoft Visual SourceSafe, the Differences for dialog box
opens. This highlights the differences between the working copy of the file
and the latest checked-in version of the file.

13-19



13 Source Control Interface

Function Alternative
The function alternative is verctrl with the showdiff or isdiff argument.

Viewing Source Control Properties of a File
To view the source control properties of a file, follow these steps:

1 In the MATLAB Current Folder browser, select the file for which you want
to view properties.

2 Right-click, and from the context menu, select Source
Control > Properties.

13-20



Additional Source Control Actions on Microsoft® Windows®

A dialog box, which is specific to your source control system, opens. The
following example shows the Microsoft Visual SourceSafe properties dialog
box.

Function Alternative
The function alternative is verctrl with the properties argument.

Starting the Source Control System
All the MATLAB source control actions automatically start the source control
system to perform the action, if the source control system is not already
open. If you want to start the source control system from MATLAB without
performing a specific action source control action,

13-21



13 Source Control Interface

1 Right-click any folder or file in the MATLAB Current Folder browser

2 From the context menu, select Source Control > Start Source Control
System.

The interface to your source control system opens, showing the source control
project associated with the current folder in MATLAB. The following example
shows the Microsoft Visual SourceSafe Explorer interface.

Function Alternative
The function alternative is verctrl with the runscc argument.

13-22



Performing Source Control Actions from the Editor, Simulink®, or Stateflow® File Menu on Microsoft® Windows®

Performing Source Control Actions from the Editor,
Simulink, or Stateflow File Menu on Microsoft Windows

You can create or open a file in the Editor, the Simulink or Stateflow products
and perform most source control actions from their File > Source Control
menus, rather than from the Current Folder browser. Following are some
differences in the source control interface process when you use the Editor,
Simulink, or Stateflow:

• You can perform actions on only one file at time.

• Some of the dialog boxes have a different icon in the title bar. For example,
the Check out file(s) dialog box uses the MATLAB Editor icon instead
of the MATLAB icon.

• You cannot add a new (Untitled) file, but must instead first save the file.

• You cannot register projects from the Simulink or Stateflow products.
Instead, register a project using the Current Folder browser, as described
in “Register Source Control Project with MATLAB Software” on page 13-7.

13-23



13 Source Control Interface

Troubleshooting Source Control Problems on Microsoft
Windows

In this section...

“Source Control Error: Provider Not Present or Not Installed Properly” on
page 13-24

“Restriction Against @ Character” on page 13-25

“Add to Source Control Is the Only Action Available” on page 13-25

“More Solutions for Source Control Problems” on page 13-25

Source Control Error: Provider Not Present or Not
Installed Properly
In some cases, MATLAB software recognizes your source control system but
you cannot use source control features for MATLAB. Specifically, when you
select File > Preferences > General > Source Control, or run cmopts,
MATLAB lists your source control system, but you cannot perform any source
control actions. Only the File > Source Control > Start Source Control
System menu item is available, and when you select it, MATLAB displays
this error:

Source control provider is not present or not installed properly.

Often, this error occurs because a registry key that MATLAB requires from
the source control application is not present. Make sure this registry key is
present:

HKEY_LOCAL_MACHINE\SOFTWARE\SourceCodeControlProvider\
InstalledSCCProviders

The registry key refers to another registry key that is similar to

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\SourceSafe\SccServerPath

This registry key has a path to a DLL-file in the file system. Make sure the
DLL-file exists in that location. If you are not familiar with registry keys, ask
your system administrator for help.

13-24



Troubleshooting Source Control Problems on Microsoft® Windows®

If this does not solve the problem and you use Microsoft Visual SourceSafe, try
running a client setup for your source control application. When SourceSafe is
installed on a server for a group to use, each machine client can run a setup
but is not required to do so. However, some applications that interface with
SourceSafe, including MATLAB, require you to run the client setup. Run the
client setup, which should resolve the problem.

If the problem persists, access source control outside of MATLAB.

Restriction Against @ Character
Some source control systems, such as Perforce® and Synergy™, reserve the @
character. Perforce, for example, uses it as a revision specifier. Therefore,
you might experience problems if you use these source control systems with
MATLAB files and folders that include the @ character in the folder or file
name.

You might be able to work around this restriction by quoting nonstandard
characters in file names, such as with an escape sequence, which some source
control systems allow. Consult your source control system documentation or
technical support resources for a workaround.

Add to Source Control Is the Only Action Available
To use source control features for a file in the Simulink or Stateflow products,
the file’s source control project must first be registered with MATLAB. When a
file’s source control project is not registered with MATLAB, all File > Source
Control menu items are disabled except Add to Source Control. You can
select Add to Source, which registers the project with MATLAB, or you
can register the project using the Current Folder browser, as described in
“Register Source Control Project with MATLAB Software” on page 13-7. You
can then perform source control actions for all files in that project (folder).

More Solutions for Source Control Problems
The latest solutions for problems interfacing MATLAB with a source
control system appear on the MathWorks Web page for support at
http://www.mathworks.com/support/. Search Solutions and Technical
Notes for “source control.”

13-25

http://www.mathworks.com/support/


13 Source Control Interface

Source Control Interface on UNIX Platforms
If you use a source control system to manage your files, you can check
MATLAB program files and Simulink models, and Stateflow charts into and
out of the source control system from within the MATLAB, Simulink, and
Stateflow products.

The source control interface supports four popular source control systems,
as well as a custom option:

• ClearCase® software from IBM® Rational®

• Concurrent Version System (CVS)

• ChangeMan® and PVCS® software from Serena®

• Revision Control System (RCS)

• Custom option — Allows you to build your own interface if you use a
different source control system. For details, see the reference page for
customverctrl.

Perform source control interface actions for a single file using menu items
in the MATLAB Editor, a Simulink model window, or a Stateflow chart
window. To perform source control actions on multiple files, use the Current
Folder browser. Alternatively, run source control functions in the Command
Window, which provide some options not supported with the menu items.

13-26



Specifying the Source Control System on UNIX® Platforms

Specifying the Source Control System on UNIX Platforms

In this section...

“MATLAB Desktop Alternative” on page 13-27

“Function Alternative” on page 13-28

“Setting a View and Checking Out a Folder with ClearCase Software on
UNIX Platforms” on page 13-29

MATLAB Desktop Alternative
To specify the source control system you want to access, select
File > Preferences > General > Source Control.

The currently selected system is shown in the Preferences dialog box. The
default selection is None.

Select the source control system with which you want to interface and click
OK.

13-27



13 Source Control Interface

MATLAB remembers preferences between sessions, so you only need to
perform this action when you want to access a different source control system.

Function Alternative
A function alternative to select a source control system is not available, but
you can list the currently selected source control system by running cmopts.

13-28



Specifying the Source Control System on UNIX® Platforms

Setting a View and Checking Out a Folder with
ClearCase Software on UNIX Platforms
If you use ClearCase software on a UNIX platform, perform the following
from ClearCase:

1 Set a view.

2 Check out the folder that contains files you want to save, check in, or check
out.

You can now use the MATLAB, Simulink, or Stateflow source control
interfaces to ClearCase software.

13-29



13 Source Control Interface

Checking Files Into the Source Control System on UNIX
Platforms

In this section...

“Checking In One or More Files Using the Current Folder Browser” on
page 13-30

“Checking In One File Using the Editor, or the Simulink or Stateflow
Products” on page 13-31

“Function Alternative” on page 13-32

Checking In One or More Files Using the Current
Folder Browser

1 From the Current Folder browser, select the file or files to check in. A file
can be open or closed when you check it in, but it must be saved, that is, it
cannot contain unsaved changes.

2 Right-click, and from the context menu, select Source Control > Check
In.

3 In the resulting Check in file(s) dialog box, you can add text in the
Comments field. If you want to continue working on the files, select the
check box Keep checked out. Click OK.

13-30



Checking Files Into the Source Control System on UNIX® Platforms

The files are checked into the source control system. If any file contains
unsaved changes when you try to check it in, you will be prompted to and
must then save the changes to complete the checkin.

An error appears in the Command Window if a file is already checked in.

If you did not keep a file checked out and you keep that file open, note that it
is a read-only version.

Checking In One File Using the Editor, or the Simulink
or Stateflow Products

1 From the Editor, or the Simulink or Stateflow products, with the file open
and saved, select File > Source Control > Check In.

2 In the resulting Check in file(s) dialog box, you can add text in the
Comments field. If you want to continue working on the files, select the
check box Keep checked out. Click OK.

13-31



13 Source Control Interface

Function Alternative
Use checkin to check files into the source control system. The files can be
open or closed when you use checkin. The checkin function takes this form:

checkin({'file1','file2', ...},'comments','comment_text',...
'option','value')

For filen, use the complete path and include the file extension. You must
supply the comments argument and a comments string with checkin.

Use the option argument to

• Check in a file and keep it checked out — set the lock option value to on.

• Check in a file even though it has not changed since the previous check in
— set the force option value to on.

The comments argument and the lock and force options apply to all files
checked in.

Example Using checkin Function
To check in the file clock.m with the comment Adjustment for leap year,
type

checkin('\myserver\myfiles\clock.m','comments', ...
'Adjustment for leap year')

For other examples, see the reference page for checkin.

13-32



Checking Files Out of the Source Control System on UNIX®

Checking Files Out of the Source Control System on UNIX

In this section...

“Checking Out One or More Files Using the Current Folder Browser” on
page 13-33

“Checking Out a Single File Using the Editor, or the Simulink or Stateflow
Products” on page 13-34

“Function Alternative” on page 13-34

Checking Out One or More Files Using the Current
Folder Browser

1 In the Current Folder browser, select the file or files to check out.

2 Right-click, and from the context menu, select Source Control > Check
Out. The Check out file(s) dialog box opens.

3 Complete the dialog box:

a To check out the versions that were most recently checked in, select
the Latest version option.

b To check out a specific version of the files, select the Version number
option and type the version number in the field.

13-33



13 Source Control Interface

c To prevent others from checking out the files while you have them
checked out, select Lock latest version. To check out read-only
versions of the file, clear Lock latest version.

4 Click OK.

An error appears in the Command Window if a file is already checked out.

After checking out files, make changes to them using MATLAB software or
another software product, and save the files. For example, edit a file in the
Editor.

If you try to change a file without first having checked it out, the file is
read-only, as seen in the title bar, and you will not be able to save any
changes. This protects you from accidentally overwriting the source control
version of the file.

If you end the MATLAB session, the file or files remain checked out. You can
check in files from within MATLAB during a later session, or directly from
your source control system.

Checking Out a Single File Using the Editor, or the
Simulink or Stateflow Products

1 Open the MATLAB program file, Simulink model, or Stateflow chart you
want to check out. The title bar indicates the file is read-only.

2 Select File > Source Control > Check Out. The Check out file(s)
dialog box opens.

3 Complete the dialog box as described in step of “Checking Out One or More
Files Using the Current Folder Browser” on page 13-33, and click OK.

Function Alternative
Use checkout to check out a file from the source control system. You can
check out multiple files at once and specify checkout options. The checkout
function takes this form:

checkout({'file1','file2', ...},'option','value')

13-34



Checking Files Out of the Source Control System on UNIX®

For filen, use the complete path and include the file extension.

Use the option argument to

• Check out a read-only version of the file — set the lock option value to off.

• Check out the file even if you already have it checked out — set the force
option value to on.

• Check out a specific version of the file — use the revision option, and
assign the version number to the value argument.

The options apply to all files being checked out. The files can be open or closed
when you use checkout.

Example Using checkout Function—Check Out a Specific
Version of a File
To check out the 1.1 version of the file clock.m, type

checkout('\myserver\myfiles\clock.m','revision','1.1')

For other examples, see the reference page for checkout.

13-35



13 Source Control Interface

Undoing the Checkout on UNIX Platforms

In this section...

“Impact of Undoing a File Checkout” on page 13-36

“Undoing the Checkout for One or More Files Using the Current Folder
Browser” on page 13-36

“Undoing the Checkout for a Single File Using the Editor, or the Simulink
or Stateflow Products” on page 13-36

“Function Alternative” on page 13-37

Impact of Undoing a File Checkout
When you undo the checkout for a file, the file remains checked in, and does
not have any of the changes you made since you checked it out. To save any
changes you have made since checking out a file, select File > Save As, and
supply a different file name before you undo the checkout. Undo the checkout
using the Current Folder browser for one or more files. For only one file, you
can also use the Editor, or the Simulink or Stateflow products.

Undoing the Checkout for One or More Files Using
the Current Folder Browser

1 In the MATLAB Current Folder browser, select the file or files for which
you want to undo the checkout.

2 Right-click, and from the context menu, select Source Control > Undo
Checkout. MATLAB undoes the checkout.

An error appears in the Command Window if the file is not checked out.

Undoing the Checkout for a Single File Using the
Editor, or the Simulink or Stateflow Products

1 Open the MATLAB program file, Simulink model, or Stateflow chart for
which you want to undo the checkout.

13-36



Undoing the Checkout on UNIX® Platforms

2 Select File > Source Control > Undo Checkout. MATLAB undoes the
checkout.

Function Alternative
The undocheckout function takes this form:

undocheckout({'file1','file2', ...})

Use the complete path for filen and include the file extension. For example,
to undo the checkout for the files clock.m and calendar.m, type

undocheckout({'\myserver\myfiles\clock.m',...
'\myserver\myfiles\calendar.m'})

13-37



13 Source Control Interface

13-38



14

Internationalization

• “How the MATLAB Process Uses Locale Settings” on page 14-2

• “Setting the Locale” on page 14-4

• “Troubleshooting I18n Messages and Settings” on page 14-9



14 Internationalization

How the MATLAB Process Uses Locale Settings
A locale is part of the user environment definition. It defines language,
territory, and codeset, which is a coded character set. The MATLAB process
uses the user-specified locale name on all platforms. MATLAB also reads the
user-specified UI language name, and uses it to select localized resources
in the specified language. By using this feature, you can select localized
resources in US-English. The user-specified UI language setting also controls
language and country settings of the Sun™ Java Virtual Machine (JVM)
software.

Consider the following when choosing your locale settings. To see what your
current settings are, use the instructions in “Setting Locale on Windows
Platforms” on page 14-4, “Setting Locale on Linux Platforms” on page 14-6, or
“Setting Locale on Macintosh Platforms” on page 14-7.

• Default Locale Setting— If the user-specified locale is not supported,
MATLAB uses the default locale en_US.US-ASCII.

• UI Language Setting — The UI language setting should be set to
either the same language as the user-specified locale or to US-English.
Otherwise, non-7-bit ASCII characters might not display properly.

• Supported Character Set — MATLAB supports the character set
specified by the user locale setting. However, MATLAB might not properly
handle character codes greater than 2 bytes.

• Script Compatibility— Non-7-bit ASCII characters in MATLAB scripts
created with one locale setting might not be compatible with a different
locale setting.

For example, if you create a script with the ja_JP.UTF-8 locale setting,
the script might not be compatible when executed on a platform with the
ja_JP.eucJP locale setting.

• Numeric Format Uses C Locale — MATLAB reads the user locale for
all categories except for the LC_NUMERIC category. This category controls
numeric data formatting and parsing. MATLAB always sets LC_NUMERIC
to the C locale. For more information, see “Numbers Display Period for
Decimal Point” on page 14-10.

• Platform-Specific Localized Formats — MATLAB usually uses
platform-neutral localized formats and rules. You can, however, use

14-2



How the MATLAB® Process Uses Locale Settings

the operating system short date format to display files, as described in
“Customizing the Column Display” on page 7-19.

Windows Platform-Specific Behavior
The user locale and system locale must be the same value on the Microsoft
Windows platform. If these values are not the same, you might see garbled
text or incorrect characters. For information on controlling these settings, see
“Setting Locale on Windows Platforms” on page 14-4.

Macintosh Platform-Specific Behavior
On the Apple Macintosh OS X platform, MATLAB reads the user locale
setting and the user UI language setting. For information on controlling these
settings, see “Setting Locale on Macintosh Platforms” on page 14-7. MATLAB
ignores the LANG environment variable and the Terminal application locale
setting.

MATLAB automatically chooses a codeset for each combination of language
and territory on the Mac OS X platform. If you customize the locale setting on
OS X, MATLAB ignores the customized portion.

14-3



14 Internationalization

Setting the Locale

In this section...

“Setting Locale on Windows Platforms” on page 14-4

“Setting Locale on Linux Platforms” on page 14-6

“Setting Locale on Macintosh Platforms” on page 14-7

Setting Locale on Windows Platforms
MATLAB software uses the system locale and user locale on Windows
platforms:

• “Setting User Locale on Windows 7 Platforms” on page 14-4

• “Setting System Locale on Windows 7 Platforms” on page 14-4

• “Setting User Locale on Windows Vista Platforms” on page 14-5

• “Setting System Locale on Windows Vista Platforms” on page 14-5

• “Setting User Locale on Windows XP Platforms” on page 14-6

• “Setting System Locale on Windows XP Platforms” on page 14-6

Setting User Locale on Windows 7 Platforms

1 Select Start -> Control Panel -> Clock, Language, and Region ->
Regional and Language.

2 Open Formats tab.

3 Select a target locale from the Format: drop-down list.

Setting System Locale on Windows 7 Platforms

1 Select Start -> Control Panel -> Clock, Language, and Region ->
Regional and Language.

2 Open Administrative tab.

14-4



Setting the Locale

3 Look in the Language for non-Unicode programs section.

4 Click Change system locale... button.

5 Select a target locale from the Current system locale: drop-down list.

6 Reboot the system.

Note When you change the system locale, you must reboot your system;
otherwise, you might see unexpected locale-setting behaviors.

Setting User Locale on Windows Vista Platforms

1 Select Start -> Control Panel -> Regional and Language Options.

2 Open Formats tab.

3 Select an item from the drop-down list.

Setting System Locale on Windows Vista Platforms

1 Select Start -> Control Panel -> Regional and Language Options.

2 Open Administrative tab.

3 Click Change system locale... button.

4 Select an item from the drop-down list.

5 Reboot the system.

Note When you change the system locale, you must reboot your system;
otherwise, you might see unexpected locale-setting behaviors.

14-5



14 Internationalization

Setting User Locale on Windows XP Platforms

1 Select Start -> Control Panel -> Regional and Language Options.

2 Open Regional Options tab.

3 Select an item from the drop-down list.

Setting System Locale on Windows XP Platforms

1 Select Start -> Control Panel -> Regional and Language Options.

2 Open Advanced tab.

3 Select an item from the drop-down list.

4 Reboot the system.

Note When you change the system locale, you must reboot your system;
otherwise, you might see unexpected locale-setting behaviors.

Setting Locale on Linux Platforms
Linux platforms manage locale settings with six locale categories. These are
the same categories used by C standard library functions.

The following locale categories are available:

• LC_CTYPE controls character data manipulations.

• LC_COLLATE controls character collation/sorting operations.

• LC_TIME controls date/time data formatting or parsing.

• LC_NUMERIC controls numeric data formatting or parsing.

• LC_MONETARY controls monetary data formatting or parsing.

• LC_MESSAGES controls the user UI language.

14-6



Setting the Locale

Setting User Locale and User UI Language
Use the LANG environment variable to specify a single locale for all locale
categories. The locale specified with this variable might be partially or
entirely over-written by other environment variables.

Use the environment variables LC_CTYPE, LC_COLLATE, LC_TIME, LC_NUMERIC,
and LC_MONETARY to specify a locale for a particular category.

Use the LC_ALL environment variable to over-write all locales specified with
other environment variables. If a single locale has to be set to all locale
categories, use LANG instead of LC_ALL.

Configuring Fonts to Display Asian Characters
On some Linux systems, to properly display Asian characters in the MATLAB
Desktop, you must configure the font with the Java Runtime Environment
(JRE™). If you previously configured fonts for your system, you must also
make the configuration changes for the JRE distributed with MATLAB.

To configure, make a symbolic link between your font and the MATLAB font
fallback directory. For example, to use the Kochi font, at the Linux system
prompt type:

ln -s /usr/share/fonts/truetype/kochi
matlabroot/sys/java/jre/glnxa64/jre/lib/fonts/fallback

where matlabroot is the folder where you installed MATLAB.

Alternatively, edit the fontconfig.properties file. See your Java
documentation for information about this file.

Setting Locale on Macintosh Platforms
The Macintosh OS X platform manages the user locale setting and the user
UI language setting.

Setting User Locale

1 Select System Preferences ->International

14-7



14 Internationalization

2 Open Formats tab

3 Select an item from the Region pop-up menu

Setting UI Language

1 Select System Preferences ->International

2 Open Language tab

3 Drag an item to the top of the Languages list

14-8



Troubleshooting I18n Messages and Settings

Troubleshooting I18n Messages and Settings
The term I18n is an abbreviation for internationalization, where 18
stands for the number of letters between the i and the n.

In this section...

“Asian Characters Incorrectly Displayed on Linux Systems” on page 14-9

“Characters Incorrectly Displayed on Windows Systems” on page 14-10

“datenum Might Not Return Correct Value ” on page 14-10

“Numbers Display Period for Decimal Point” on page 14-10

“MATLAB Displays Messages in English” on page 14-11

“File or Folder Names Incorrectly Displayed” on page 14-11

Asian Characters Incorrectly Displayed on Linux
Systems
On some Linux systems, to properly display Asian characters in the MATLAB
Desktop, you must configure the font with the Java Runtime Environment
(JRE). If you previously configured fonts for your system, you must also make
the configuration changes for the JRE distributed with MATLAB.

To configure, make a symbolic link between your font and the MATLAB font
fallback directory. For example, to use the Kochi font, at the Linux system
prompt type:

ln -s /usr/share/fonts/truetype/kochi
matlabroot/sys/java/jre/glnxa64/jre/lib/fonts/fallback

where matlabroot is the folder where you installed MATLAB.

Alternatively, edit the fontconfig.properties file. See your Java
documentation for information about this file.

14-9



14 Internationalization

Characters Incorrectly Displayed on Windows
Systems
The user locale and system locale must be the same value on the Microsoft
Windows platform. If these values are not the same, you might see garbled
text or incorrect characters. For information on controlling these settings, see
“Setting Locale on Windows Platforms” on page 14-4.

datenum Might Not Return Correct Value
To ensure the correct calculation of functions using date values associated
with files and folders, replace datenum function calls with the use of the dir
function datenum field.

For example, look at the modification date of your MATLAB license.txt file:

cd(matlabroot)
f=dir('license.txt')

MATLAB displays information similar to:

f =
name: 'license.txt'
date: '10-May-2007 17:48:22'

bytes: 5124
isdir: 0

datenum: 7.3317e+005

If your code uses the date field of the dir command, similar to:

n=datenum(f.date);

replace it with the datenum field:

n=f.datenum;

Numbers Display Period for Decimal Point
MATLAB uses a period for a decimal point, regardless of the format specified
by the user locale. For example, the value of pi can be displayed as 3,1415 or
3.1415, depending on the format used by a locale. MATLAB always displays
3.1415.

14-10



Troubleshooting I18n Messages and Settings

The MATLAB language reserves the use of commas to the cases described in
the “Comma — ,” topic of the Programming Fundamentals Symbol Reference.

MATLAB Displays Messages in English
MATLAB displays messages in English, regardless of the UI language setting,
except when running in a Japanese Microsoft Windows environment.

File or Folder Names Incorrectly Displayed
On Windows and Linux platforms, characters used in file or folder names
must be in the supported character set. See Supported Character Set in
“How the MATLAB Process Uses Locale Settings” on page 14-2.

On Macintosh platforms, for files and folders used by MATLAB, characters in
the file or folder name must be in the 7-bit ASCII character set.

14-11



14 Internationalization

14-12



Index

IndexSymbols and Numerics
, after functions 3-47
; after functions 3-47
% comment

creating 9-42
% comment symbol 9-41
! function 3-8

argument length restrictions 3-9
%% 9-178
{% block comment symbol 9-43
>> prompt in Command Window 3-3
... in statements 3-20

A
absolute path name 7-8

copying 7-9
accelerators

Command Window 2-66
accelerators, keyboard 2-66
Access Bridge 2-162
accessibility 2-159

documentation 2-160
installation 2-162
troubleshooting 2-165

account
MathWorks products 2-119

activate license 2-121
antialiasing

desktop fonts 2-149
AppleScript

running from MATLAB 3-9
archive files

adding files to 7-40
creating 7-38 to 7-39
extracting files from 7-39

arrays
editing 6-24
workspace 6-2

assistive technology 2-159

asv 9-85
autoinit cells

converting input cells to 12-31
converting to input cells 12-32
defining 12-14

AutoInit style
definition of 12-24

automatic completion of statement
Command Window 3-24
Editor 9-46

automatic fix
M-Lint 9-112

autosave files 9-85

B
back and forward navigation 9-75
backup files

MATLAB Editor autosave and 9-85
bang (!) function 3-8
base workspace 6-9
batch mode for starting MATLAB 1-17
beep

preferences 2-139
binary files

comparing 7-59
blank line 9-16
blank spaces in MATLAB commands 3-17
block comments 9-43

extending 9-43
blue breakpoint icon 9-168
bold text

in published MATLAB code 11-43
within cell 11-43

bookmarks
in files in Editor 9-71
in Help browser 4-12

books 4-38
Boolean searching in Help browser 4-22
breaking long lines 3-20

Index-1



Index

breaking out of a running program 3-8
breakpoints

anonymous functions 9-168
blue icon 9-168
clearing (removing) 9-160
clearing, automatically 9-161
conditional 9-166
disabling and enabling 9-159
multiple per line 9-168
running file 9-148
setting 9-144
types 9-144

Bring MATLAB to Front 12-30
browser

for Web 2-101
bugs, reporting to The MathWorks 4-38
built-in editor 9-4

C
C/C++

editing files in Editor 9-8
caching

files 9-84
search path 7-6

calc zones
defining 12-14
ensuring workspace consistency in MATLAB

Notebooks 12-10
evaluating 12-20
output from 12-20

callbacks
in shortcuts 2-57

calling from MATLAB 3-8
capitalization in MATLAB 3-17
case

changing lower to upper in Editor 9-39
changing upper to lower in Editor 9-39

case sensitivity in MATLAB 3-17
cell arrays

editing 6-27
cell breaks 9-178 11-19
cell dividers. See cell breaks
cell groups

converting to input cells 12-37
creating 12-13
definition of 12-13
evaluating 12-18
output from 12-18

cell highlighting
troubleshooting 9-182

cell markers
defined 12-12
hiding 12-35
printing 12-23

cell mode 9-175
cell scripts 9-175
cell titles 9-180
cells

files and 9-175
cells in files 9-175

removing 9-184
changing

search path 7-75
character set

preference for MAT-files 2-131
checkin

on UNIX platforms 13-32
checking in files

on UNIX platforms 13-30
checking out files

on UNIX platforms 13-33
on Windows platforms 13-12
undoing on UNIX platforms 13-36
undoing on Windows platforms 13-13

checkout
on UNIX platforms 13-34

class help
adjusting wrapping for 9-45

clc 3-50

Index-2



Index

clear 6-9
ClearCase source control system

configuring on UNIX platforms 13-29
clearing

Command Window 3-50
variables 6-9

clicking on multiple items 2-113
clipboard 2-114
closing

desktop tools 2-8
MATLAB 1-23

code
automatically analyzing for warnings and

errors 9-107 to 9-108
checking 10-22
debugging

options 9-4
code analysis 9-107
Code analysis

Editor access 9-107
Code Analyzer preferences

setting 9-124
Code Analyzer Report 10-2 10-22

checking MATLAB code 10-22
code cells 9-10

evaluating 9-194
files and 9-175
publishing and 11-2

code cells in files
beep 9-195
defining 9-178
evaluating 9-195
evaluating code in 9-196
modifying values in 9-197
nested 9-185
toolbar 9-177

code examples 9-2
code folding

behavior 9-62
preferences 9-62

viewing code in Tooltip 9-61
code folding in files 9-57
code folding preferences in files 9-34
code iteration 9-175
code resources 9-2
code samples

sample code 9-2
collapsing

code in files 9-34 9-57
Collatz problem 9-142
colors

general preferences 2-152
Help browser 4-32
in files 9-53
indicators for syntax 3-23
preferences in MATLAB 2-150
printing MATLAB Notebook 12-23

column numbers 9-55
columns

customizing in Current Folder browser 7-19
command flags 1-14
Command History

about 3-66
changing date format in 7-20
deleting entries in window 3-76
file 3-67
find entry by letter 3-70
preferences 3-78
printing window contents 3-76
running functions from window 3-69

command history file 3-68
command line

defined 3-3
editing 3-18

command name completion
Command Window 3-24
Editor 9-46

command switches 1-14
Command Window

bringing to front in Notebook 12-30

Index-3



Index

clearing 3-50
editing in 3-18
getting started message bar 3-63
paging of output in 3-47
preferences 3-60
printing contents of 3-50
prompt 3-2
scroll buffer 3-64
width 3-62

commands
executing a group of 2-57
on multiple lines 3-20
to operating system 3-8

comments
adding/removing in C/C++ files 9-42
adding/removing in Java files 9-42
adding/removing with any text editor 9-42
adding/removing with Editor 9-41
adjusting wrapping for class help 9-45
block 9-43
color indicators 2-152
creating in MATLAB code files 9-40
marking up within code cell 11-19
multiline statements 9-44
using ... (ellipsis) 9-44
within a line 9-44
wrapping in files 9-45

comp.soft-sys.matlab 4-40
comparing

directories 7-50
files 7-50

comparing working copy to source control version
on Windows platforms 13-18

Comparison Tool
features of 7-63

completing statements automatically
Command Window 3-24
Editor 9-46

compression
MAT-files and Fig-Files 2-131

conditional breakpoints 9-166
configuration management

See source control system interface 13-1
configuration, desktop 2-5
configurations

reassociating 9-99
renaming 9-99
See also publish configurations 9-88
See also run configurations 9-88

configuring Notebook 12-28
confirmation dialog boxes

preferences 2-132
console mode 3-62
Contents Report 10-11
context menus 2-108
continuation

long lines 3-20
continuing long statements 3-20
conversion

Word document to MATLAB Notebook 12-7
copying

files and folders 7-45
Coverage Report 10-20
<CR> 9-16
crash 1-24
creating

files and folders
using functions 7-41

cropping graphics
in MATLAB Notebooks 12-27

cssm 4-40
current folder

at startup for MATLAB 1-8
changing 7-4
in MATLAB 7-2
viewing 7-4

Current Folder browser 7-12
asterisks and 7-19
changing date format in 7-20
columns 7-19

Index-4



Index

details panel 7-21
preferences 7-14
refresh display 7-15
running scripts from 7-48
viewing image thumbnails in 7-21

D
data consistency

calc zones in MATLAB Notebooks 12-10
evaluating MATLAB Notebooks 12-10
in MATLAB Notebook 12-10

data tips
example 9-153

date format
changing in Command History window 7-20
changing in Current Folder browser 7-20

dbclear 9-160
dbstop

example 9-148
deactivate license 2-121
Debugger 9-1
debugging

code
options 9-4

ending 9-158
example 9-142
features 9-141
files 9-104
Notebook 12-11
prompt 9-149
stepping 9-150
techniques 9-104
with unsaved changes 9-165

decimal places in output 3-48
defaults

preferences for MATLAB 2-124
setting in startup file for MATLAB 1-15

Define Autoinit Cell 12-31
Define Calc Zone 12-31

Define Input Cell 12-32
deleting

files and folders
using Current Folder browser 7-42
using functions 7-44

variables 6-9
delimiter

matching in Editor 2-139
preferences for matching 2-139

demos
using 4-25

Dependency Report 10-15
description for file

viewing in Current Folder browser 7-20
desktop

active window 2-6
color preferences 2-150
configuration 2-5
description 2-2
docking 2-14
focus 2-6
font preferences for 2-141
grouping tools 2-14
layout

saving 2-37
maximizing tools 2-17
minimizing tools 2-17
predefined layouts 2-38
saving layout 2-37
tools

closing 2-8
opening 2-4

windows
closing 2-8
docking 2-9
grouping together 2-14
moving 2-10
opening 2-4
sizing 2-9
sizing using keyboard 2-9 2-13

Index-5



Index

undocking 2-13 2-35
development environment for MATLAB 2-2
diagnostics

startup
Macintosh 1-6

diary 3-51
difference reporting for files 7-50
directories

comparing 7-50 7-60
directory. See folder
disabling

breakpoints 9-159
displaying

output 3-47
displaying source control properties of a

file 13-20
dividers for code cells. See cell breaks
do not show again

preferences 2-132
docking tools in desktop 2-14
docking windows in desktop 2-9
document bar

document name 2-23
width 2-23

document titles
in published MATLAB code 11-19

documentation
accessibility 2-160
all products 4-39
most current version 4-39
printed 4-35
Web site 4-39

documents
arranging in Editor 9-11

dots (...) 3-20
dragging in the desktop 2-114
dynamic hyperlinks

inserting in published code 11-49
inserting to run MATLAB code 11-49

E
echo execution 3-47
edit

creating new files in the Editor 9-8
editing

files
outside of MATLAB 9-4

in Command Window 3-18
MATLAB files 9-1

editor
built-in 9-4
external to MATLAB 9-15
setting as default 9-15

Editor 9-1
arranging documents 9-11
changing casing in 9-39
closing 9-11
closing files 9-86
description 9-6
example 9-142
go to

bookmark 9-71
function 9-71
line number 9-71

highlighting current line in 9-55
horizontal lines 9-180
indenting 9-6
modifying values 9-194
navigating 9-71
navigating back and forward 9-75
opening files in 9-9
preferences 9-13
publishing files 11-64
redoing an activity 9-40
rule displayed 9-56
running files 9-87
running with unsaved changes 9-165
status bar

function 9-57
undoing an activity 9-40

Index-6



Index

using Command Window features in 9-38
Editor/Debugger

files in File menu 9-15
publishing images preferences 11-74
publishing preferences 11-74

EDU>> prompt in Command Window 3-3
ellipses (...) in statements 3-20
Embed Figures in MATLAB Notebook 12-25
embedding graphics

in MATLAB Notebook 12-25
encoding

preference when saving 2-131
end of file 9-16
ending MATLAB 1-23
environment settings at startup 1-15
environment variables 3-9
error breakpoints

stop for errors 9-170
error logs 1-24
error message identifiers 9-172
error messages

in Command Window 3-7
error style

definition 12-24
errors

color indicators 2-152
finding in files 9-104
run-time 9-104
source control 13-24
syntax 9-104

errors and warnings
analyzing code for 9-107

Evaluate Calc Zone 12-32
Evaluate Cell 12-33
Evaluate Loop 12-34
Evaluate Loop dialog box 12-21
Evaluate M-Book 12-34
evaluating

MATLAB Notebooks, ensuring data
consistency 12-10

selection in Command History window 3-69
selection in Command Window 3-11

evaluating sections of a file 9-195
exact phrase

Help browser search 4-20
exe 3-8
executables

running from MATLAB 3-8
executing

group of statements 2-57
execution

displaying functions during 3-47
stopping 3-8

exiting MATLAB 1-23
expanding

code in files 9-34 9-57

F
f button 9-71
F Inc Search field 9-82
fatal error 1-24
favorites in Help browser 4-12
FIG files

opening in GUIDE 7-45 to 7-46
Fig-files

compatibility 2-131
save options 2-131

file
editing

options 9-4
file management system

See source control system interface 13-1
files

appearance of 9-53
backing up 9-83 9-85
cleanup before publishing 11-54
closing 9-86
code cells and 9-175
colors in 9-53

Index-7



Index

comparing 7-50
creating 9-4

from Command History window 3-70
creating from Command History 9-2
creating from Command Window 9-2
creating new 9-7
debugging 9-104
determining cyclomatic complexity of 9-105
determining McCabe complexity of 9-105
editing files 9-6
finding by name 7-30
formatting for publishing 11-10
formatting MATLAB comments in 9-45
log 1-16
managing 7-2
marking up code for publishing 11-60
marking up for publishing

section titles 11-22
table of contents 11-21

naming
avoiding conflicts 7-70

opening 9-9
opening as text files 7-45 to 7-46
opening outside MATLAB 7-45 to 7-46
operations in MATLAB 7-2
pausing 9-106
performance of 10-27
printing 9-85
profiling 10-27
publishing 11-64

before and after formatting 11-4
bold text 11-43
graphics 11-30
HTML markup tags 11-34
hyperlinks 11-46
inline LaTeX math symbols 11-39
italic text 11-43
LaTeX markup 11-36
LaTeX math symbols as blocks 11-40
lists 11-27

monospaced text 11-43
preformatted text 11-25
trademark symbols 11-45

publishing process 11-3
recommendations on saving 9-84
run configurations for 9-88
running

from Command Window 3-7
running sections of 9-175
saving 9-83
saving automatically in Editor 9-85
search path 7-66
searching contents of 7-30
snapshot of output in published MATLAB

code 11-42
summary of markup for publishing 11-57
syntax highlighting in 9-53

Files
opening file or variable from 9-76

filter
Current Folder browser 7-27

Find Files dialog box 7-30
finding

files and folders
by name 7-27

files by name and content 7-30
text in Command History window 3-75
text in Command Window 3-52

finish.m file running when quitting 1-24
firewall

settings to work through 2-104
fix me reports 10-4
flags

for startup 1-14
focus 2-6
folder

operations in MATLAB 7-2
folders

comparing 7-60
creating 7-36

Index-8



Index

MATLAB
caching 9-84

font
adding new family for MATLAB 2-150
antialiasing in desktop 2-149
Help browser 4-30
preferences in MATLAB 2-141
size, additional values 2-142
smoothing in desktop 2-149

format 3-48
controlling numeric format in MATLAB

Notebook 12-25
in MATLAB Notebook 12-25
preferences 3-62

FTP
transferring files via link 3-12

full path name 7-8
copying 7-9

function hints
disabling 3-37

function name
automatic completion

Command Window 3-24
Editor 9-46

function workspace 6-9
functions

color indicators 2-152
determining usage of 9-107
displaying during execution 3-47
executing a group of 2-57
long (on multiple lines) 3-20
multiple in one line 3-20
naming

avoiding conflicts 7-70

G
get latest version of file on Windows

platforms 13-14
getting files 13-33

graphical debugger 9-1
graphics

controlling output in MATLAB
Notebook 12-26

embedding in MATLAB Notebook 12-25
in MATLAB Notebooks 12-25
in published MATLAB code 11-30
within cell 11-27

gray background color in desktop 2-152
gray breakpoint icons 9-147
gray horizontal lines in Editor 9-180
green indicator in Editor 9-107
Group Cells 12-34
grouping

tools in desktop 2-14

H
HDF

preference when saving 2-131
headings

within code cell 11-19
help

creating for program files 5-9
for selected function 3-38

Help browser
color preferences 4-32
font preferences 4-30
printing from 4-35
viewing page location 4-12

Help Report 10-8
hidden files

viewing 7-16
Hide Cell Markers 12-35
history

automatic log file 1-16
source control on Windows platforms 13-16

history file 3-67
history of statements 3-66
history.m file 3-67

Index-9



Index

home 3-50
horizontal lines in Editor 9-180
hot keys 2-66

desktop 2-66
Variable Editor 6-34

HTML
editing files in Editor 9-8

HTML markup tags
in published MATLAB code 11-34

HTML viewer in MATLAB 2-101
hyperlinks

Command Window 3-12
in published MATLAB code 11-46
inserting in published code 11-49
running functions by 3-13

I
image files

previewing in Current Folder Browser 7-21
images

resizing in published MATLAB code 11-86
import

files for use with MATLAB 7-72
in files 9-10
include

files with MATLAB 7-72
incremental searching

in Editor 9-82
indented text

within cell 11-27
indenting

functions and nested functions 9-55
in Command Window 3-23
in Editor 9-54
preference in Editor

C/C++ 9-30
HTML 9-34
Java 9-32

preference in Editor/Debugger 9-21

info.xml
Start button 2-96

info.xml validation errors 5-61
initiation (init) file for MATLAB 1-15
inline LaTeX math symbols

in published MATLAB code 11-39
inline links

within cell 11-46
input

to MATLAB in Command Window 3-2
input cells

controlling evaluation 12-21
controlling graphic output 12-26
converting autoinit cell to 12-32
converting text to 12-32
converting to autoinit cell 12-31
converting to cell groups 12-37
converting to text 12-15
defining in MATLAB Notebooks 12-12
evaluating 12-17
evaluating cell groups 12-18
evaluating in loop 12-21
maintaining consistency 12-10
timing out during evaluation 12-33
use of Word Normal style 12-16

Input style
definition of 12-24

Insert key
Editor 9-39

insert mode
Editor 9-39

Internet
proxy server settings 2-104

interrupting a running program 3-8
invalid breakpoints 9-147
italic text

in published MATLAB code 11-43
within cell 11-43

iterative programming 9-175

Index-10



Index

J
Java

editing files in Editor 9-8
Java Heap

preferences 2-136
Java VM

starting without 1-17
JAWS 2-161

K
K>>

prompt in Command Window 3-3
K>> prompt in Command Window

debugging mode 9-149
keyboard statement 9-106

keyboard 9-106
keyboard shortcuts

Command Window 2-66
Variable Editor 6-34

keywords
color indicators 2-152
matching in Editor 2-139

L
LaTeX markup

in MATLAB code 11-36
LaTeX math symbols

in published MATLAB code 11-40
layout for desktop

saving 2-37
license information 4-37
license management 2-121
licenses 2-119
line

horizontal
in Editor 9-180

vertical
in Editor 9-56

line breaks
adding for long statements 3-20

line continuation 3-20
line numbers 9-55

going to 9-71
line termination 9-16
line wrapping 3-62
links

Command Window 3-12
in published MATLAB code 11-46

lists
in published MATLAB code 11-27
within cell 11-27

load 6-7
locking files on checkout 13-33
log

automatic 1-16
file 1-16
session 3-51
statements 3-66

logfile startup option 1-16
login

remote on Macintosh 1-6
long lines 3-20
looping

to evaluate input cells 12-21
lowercase usage in MATLAB 3-17

M
M-Lint 9-107
M-Lint Code Check Report. See Code Analyzer

Report
M-lint messages

analyzing code for 9-107
M-Lint messages

suppressing 9-117
M-Lint preferences. See Code Analyzer

preferences
Macintosh

Index-11



Index

startup
remote login 1-6

MAT-files
comparing 7-57
compatibility 2-131
compression options 2-131
creating 6-5
defined 6-5
loading 6-7
preferences 2-131
updating using Current Folder Browser 7-37
viewing variables without loading 7-21

matched delimiters
preferences 2-139

matching parentheses
in Editor 2-139

MATLAB
commands, executing in a Word

document 12-17
quitting 1-23

confirmation 1-23
search path 7-72

MATLAB code file comments
purpose of 9-40

MATLAB code files
file association (Windows) 1-2
running

at startup 1-17
MATLAB files

editing 9-1
matlab folder 1-9
MATLAB functions

running by hyperlink 3-13
MATLAB installations

search path with 7-80
MATLAB Notebooks

creating 12-2
data consistency 12-10
data integrity 12-10
entering text and commands 12-9

evaluating all input cells 12-20
modifying style template 12-23
opening 12-6
printing 12-23
sizing graphic output 12-27
styles 12-23

matlab:
running functions with 3-13

matlab.mat 6-7
matlabrc.m, startup file 1-15
matrices

editing 6-24
maximizing

tools in desktop 2-17
measuring performance of your code 10-27
membership Web page 2-119
message identifiers 9-172
messages

suppressing 9-117
suppressing indicators 9-117

Microsoft Word
converting document to MATLAB

Notebook 12-7
minimize

Windows startup option 1-16
minimizing

tools in desktop 2-17
model files

description in Current Folder browser 7-20
monospaced text

in published MATLAB code 11-43
within cell 11-43

more 3-47
mouse, right-clicking 2-108
moving

files and folders 7-45
multidimensional arrays

editing 6-27
multiple item selection 2-113
multiple lines for statements 3-20

Index-12



Index

multiprocessing 3-8
multithreading

turning off 1-17

N
name clashes 7-70
naming

functions and variables
avoiding conflicts 7-70

navigating
files 9-71

nested
code cells in files 9-185

nested comments 9-43
nested functions

indenting 9-55
newsgroup for MATLAB 4-40
newsletters 4-40
nojvm startup option 1-17
Normal style (Microsoft Word)

default style in MATLAB Notebook 12-23
defaults 12-24
used in undefined input cells 12-16

notebook
function 12-2
overview 12-2
platforms supported 12-1

Notebook
configuring 12-28
debugging 12-11
options 12-35

Notebook menu
Word menu bar 12-2

numbering lines 9-55
numeric format

controlling in MATLAB Notebook 12-25
output 3-48
preferences 3-62

O
objects

editing 6-27
openvar

using 6-26
operating system commands 3-8
operators

searching for 4-23
optimizing code performance 10-27
options

shutdown 1-24
startup 1-14

orange underline in file 9-112
output

display
format 3-48
hidden 3-47

hiding 3-47
in Command Window 3-2
paging 3-47
spaces per tab 3-64
spacing of 3-62
suppressing 3-47

output cells
converting to text 12-22
purging 12-22

Output style
definition 12-24

overwrite mode
Editor 9-39

P
paging in the Command Window 3-47
parentheses

matching 2-139
parentheses matching

preferences 2-139
partial

path name 7-10

Index-13



Index

partial word
Help browser search 4-21

passcodes 2-119
path. See search path
PATH environment variable 3-9
path name 7-8

absolute 7-8
length 7-9
partial 7-10
relative 7-8
See also absolute path name; full path name;
relative path name

pathdef.m
location 7-73

pausing execution of file 9-144
PDF

reader, preference for Help browser 4-33
PDF documentation 4-35
performance

improving for you code 10-27
periods (...) 3-20
Perl variables

passing
at startup 1-17

Plot Selector tool
using the 6-10

plotting
from the Workspace browser 6-10

pop-up menus 2-108
precision

output display 3-48
preferences

code folding 9-62
Current Folder browser 7-14
Editor 9-13
MATLAB, general 2-129
publishing 11-74
publishing images 11-74

preformatted text
in published MATLAB code 11-25

printed documentation 4-35
printing

Command History window contents 3-76
Command Window contents 3-50

printing a MATLAB Notebook
cell markers 12-23
color 12-23
defaults 12-23

problems, reporting to The MathWorks 4-38
product filter in Help browser

preference 4-28
profile 10-46

example 10-47
profiling 10-27
program control blocks

code folding and 9-34
program elements

going to 7-23
program files

help
viewing in Current Folder browser 7-20

naming
avoiding conflicts 7-70

viewing help for 7-21
programs

running from MATLAB 3-8
stopping while running 3-8

prompt
in Command Window 3-2
when debugging 9-149

properties
source control on Windows platforms 13-20
tab completion

Command Window 3-32
Editor 9-51

proxy server settings 2-104
publish configuration

creating multiple 11-93
running 11-92

publish configurations

Index-14



Index

creating 11-66
finding 9-96
for files in Editor 11-65
porting 11-104
publish settings 11-70
removing 9-98

publish settings
in publish configurations 11-70
template 11-90

publish_configurations.m file 11-104
published MATLAB code

resizing images in 11-86
publishing

MATLAB code and results 11-2
using code cells and 11-2

publishing images preferences 11-74
publishing preferences 11-74
Purge Output Cells 12-35
purging output cells 12-22

Q
quitting

saving workspace 1-24
quitting MATLAB 1-23

confirmation 1-23

R
R Inc Search field 9-82
rapid code iteration 9-175

scenarios 9-176
rapid development 9-175
recall previous lines 3-21
recovering deleted files 7-42
recycle 7-42
red breakpoint icons 9-147
red underline in file 9-112
redo

in desktop 2-114

in Editor 9-40
refresh

Current Folder browser 7-15
registered trademarks

within cell 11-45
relative path 7-8
release

latest 2-123
remote login

Macintosh 1-6
removing files from source control system 13-15
renaming

files and folders
using Current Folder browser 7-42
using functions 7-42

Report
Code Analyzer 10-22
folder 10-2

reports
accessing 10-2
Contents 10-11
Dependency 10-15
Help 10-8
To do 10-4
TODO/FIXME 10-4
using 10-2

Reports
Coverage 10-20
Fix me 10-4

requirements
MATLAB 1-1

resizing windows in the desktop 2-9
restoring

tools in desktop 2-17
results in MATLAB, displaying 6-26
revision control

See source control system interface 13-1
right-hand text limit 9-56
rule

in Editor 9-56

Index-15



Index

rules (lines) in Editor 9-180
run configurations

creating 9-88
creating multiple 9-93
exporting 9-96
finding 9-96
for files in Editor 9-88
importing 9-96
porting 9-96
removing 9-98
using 9-88

run_configurations.m file 9-96
run-time errors 9-104

S
save

function 6-7
saving

MAT-files
preferences 2-131

workspace upon quitting 1-24
screen reader 2-161
script for startup 1-15
scroll buffer for Command Window 3-64
scrolling in Command Window 3-47
search path

adding folders to 7-75
behavior when changing folders 7-83
changing 7-75
default 7-66
description 7-66
problems and recovering 7-81
saving 7-79
using 7-72
using with different MATLAB

installations 7-80
viewing 7-74

searching
for files by name and content 7-30

Help browser
Boolean 4-22
exact phrase (" ") 4-20
wildcard (*) or partial word 4-21

in Current Folder browser
by name 7-27
typeahead 7-27

special characters 4-23
text

Command History window 3-75
Command Window 3-52
incrementally 9-82

section breaks
in calc zones 12-31

section titles
in published MATLAB code 11-22

segmentation violation 1-24
segv 1-24
selecting multiple items 2-113
semicolon (;)

after functions 3-47
between functions 3-20

separator in functions 3-20
session

automatic log file 1-16
session log

Command History 3-66
diary 3-51

setting breakpoints 9-144
shadowed functions 7-70
shell escape 3-8
shortcut

for MATLAB in Windows 1-1
keys in MATLAB 2-66

shortcut keys
Variable Editor 6-34

shortcuts
categories 2-62
creating

from Command History window 3-70

Index-16



Index

defined 2-57
deleting 2-62
displaying hidden labels on the toolbar 2-64
editing 2-62
file 2-59
labels, hiding 2-64
moving 2-62
organizing 2-62
toolbar 2-60

Shortcuts
Deleting from toolbar 2-64

shortcuts.xml 2-59
Show Cell Markers 12-35
show file history on Windows platforms 13-16
shutdown

MATLAB 1-23
options 1-24

Simulink model
opening from a file 9-76

Simulink models
viewing complete descriptions of 7-21

singleCompThread startup option 1-17
sizing windows in the desktop 2-9
smart recall 3-21
source control on UNIX platforms

getting files 13-33
locking files 13-33

source control system interface 13-1
UNIX platforms 13-26

preferences 13-27
selecting system 13-27
supported systems 13-26

Windows platforms
adding files 13-10
preferences 13-5
selecting system 13-5
supported systems 13-2

source control system interface on UNIX
platforms
checking in files 13-30

checking out files 13-33
configuring ClearCase source control

system 13-29
undoing file check-out 13-36

source control system interface on Windows
platforms
checking out files 13-12
comparing working copy to source control

version 13-18
displaying file properties 13-20
get latest version of file 13-14
removing files 13-15
showing file history 13-16
starting source control system 13-21
troubleshooting 13-24
undoing file check-out 13-13

spaces in MATLAB commands 3-17
spacing

output in Command Window 3-62
tabs in Command Window 3-64

special characters
searching for 4-23

splash screen
startup option 1-17

split screen display
Editor 9-67

stack
in Editor 9-149
viewing 6-9

Start button 2-94
customizing 2-96

starting MATLAB
DOS 1-1
Linux 1-5
Windows 1-1

startup
diagnostics

Macintosh 1-6
files for MATLAB 1-15
files open 9-16

Index-17



Index

folder for MATLAB 1-8
Macintosh, remote login 1-6
options for MATLAB 1-14
script 1-15

startup.m
location 1-16
startup file 1-15

statement
definition 3-6

statements
defined 3-5
executing a group of 2-57
long (on multiple lines) 3-20

stepping through files 9-150
stopping execution 3-8
stops

in files 9-144
stops (...) 3-20
strings

across multiple lines 3-20
color indicators 2-152
saving as Unicode 2-131

structures
editing 6-27
tab completion 3-31 9-50

style preferences for text 2-141
styles in MATLAB Notebook

modifying 12-23
subfunctions

displaying in Editor status bar 9-57
going to in file 9-71

support
technical 4-38

suppressing output 3-47
switches

for startup 1-14
symbols

searching for 4-23
syntax

color indicators 2-152

color preferences in MATLAB 2-150
coloring and indenting 3-23
errors 9-104
highlighting 9-53

system browser
UNIX 2-106

system environment variables 3-9
system path for UNIX 3-9
system requirements

MATLAB 1-1
system Web browser 2-101

T
tab

indenting in Editor 9-54
preference for indenting in Editor

C/C++ 9-30
HTML 9-34
Java 9-32

preference for indenting in
Editor/Debugger 9-21

spacing in Command Window 3-64
tab completion

Command Window 3-24
Editor 9-46

tabbing desktop windows together 2-14
Technical Support

contacting 4-38
Web page 2-119

templates
for publish settings 11-90
MATLAB Notebook 12-23

temporary folder
for deleted files 7-42

terminating a running program 3-8
text

converting to input cells 12-32
finding and replacing 9-80
finding in current file 9-78

Index-18



Index

preferences in MATLAB 2-141
styles in MATLAB Notebook 12-23

text editor, setting as default 9-15
text editors for files 9-4
text files

comparing 7-52
editing in Editor 9-8

threads
turning off multithreading 1-17

time
measured for your code 10-27

time-out message
while evaluating multiple input cells in a

MATLAB Notebook 12-33
titles

in published MATLAB code 11-19 11-21 to
11-22

TLC
editing files in Editor 9-8

tmp/MATLAB_Files folder 7-44
to do reports 10-4
TODO/FIXME Report 10-4
Toggle Graph Output for Cell 12-36
token matching

preferences 2-139
tool tips 2-110
toolbars

customizing 2-156
desktop 2-110
Editor cell mode 9-177
shortcuts 2-60

toolbox path cache
preferences 1-20

toolboxes
custom, adding to Start button 2-96

tools in desktop
description 2-2

Tooltips
for data 9-153
viewing folded code in 9-61

trademark symbols
in published MATLAB code 11-45
within cells 11-45

trial versions 2-119
troubleshooting

cell highlighting 9-182
source control problems 13-24

type ahead feature 3-21

U
UNC (Universal Naming Convention) path 10-3
uncomment 9-41
Undefine Cells 12-36
undo

in desktop 2-114
in Editor 9-40

undocking windows from desktop 2-13 2-35
undoing file check-out

on UNIX platforms 13-36
on Windows platforms 13-13

Ungroup Cells 12-37
Unicode

preference when saving 2-131
UNIX

system path 3-9
updates

to newer versions 2-123
updates to products 2-119
uppercase usage in MATLAB 3-17
utilities

running from MATLAB 3-8

V
validating

MATLAB code 10-22
values

examining 9-152
Variable Editor 6-24

Index-19



Index

cut, copy, paste, clear 6-36
decimal separator 6-47
keyboard shortcuts 6-34
preferences 6-46
size limitations 6-26
undo and redo 6-40

variables
deleting or clearing 6-9
determining usage of 9-107
displaying values of 6-26
editing values 6-24
finding in current file 9-78
naming

avoiding conflicts 7-70
opening from a file 9-76
saving 6-5
viewing 7-21
viewing during execution 9-152
viewing values in Editor 9-153
workspace 6-2

Verilog
editing files in Editor 9-8

version 2-123
information for MathWorks products 4-37
latest available 2-123

version control
See source control system interface 13-1

vertical line
in Editor 9-56

VHDL
editing files in Editor 9-8

viewing desktop tools 2-5
Visible figure property

embedding graphics in MATLAB
Notebook 12-26

W
warning breakpoints 9-170
warning message identifiers 9-172

Web
accessing from MATLAB 2-119
preferences 2-104
proxy server settings 2-104
site for MathWorks 2-119

Web Browser
font 2-107
in MATLAB 2-101

Web site
documentation 4-39

who 6-4
whos 6-4
wildcard (*)

Help browser search 4-21
window

active 2-6
focus 2-6

windows in desktop
about 2-2
arrangement 2-5
closing 2-8
docking 2-9
moving 2-10
opening 2-5
sizing 2-9
undocking 2-13 2-35

Word documents
converting to MATLAB Notebook 12-7

workspace
base 6-9
clearing 6-9
defined 6-2
functions 6-9
initializing in MATLAB Notebook 12-14
loading 6-7
MATLAB Notebook contamination 12-10
opening 6-7
protecting integrity 12-10
saving 6-5
tool 6-2

Index-20



Index

viewing 6-4
viewing during execution 9-152

Workspace browser
description 6-2
plotting variables from 6-10
preferences 6-9

wrapping
lines in Command Window 3-62
long statements 3-20

X
XML

editing files in Editor 9-8
XML: file validation 5-61

Y
yellow highlighting in file 9-112

current cell 9-180
data tip 9-153

Z
zip files

adding files to 7-40
creating 7-38 to 7-39
extracting files from 7-39
viewing contents of 7-38

Index-21


	toc
	Startup and Shutdown
	Starting the MATLAB Program on Windows Platforms
	Associating Files with MATLAB on Windows Platforms
	Managing File Associations for MATLAB on Windows Systems
	Utilities to Set Up File Associations on Windows Platforms


	Starting the MATLAB Program on Linux Platforms
	Starting the MATLAB Program on Macintosh Platforms
	Limitation

	Startup Error Log Reporter
	Startup Folder for the MATLAB Program
	What Is the Startup Folder?
	Startup Folder on Windows Platforms
	Startup Folder on Linux Platforms
	Startup Folder on Macintosh Platforms
	Changing the Startup Folder
	Changing the Startup Folder Via the userpath Function
	Changing the Startup Folder Using the Shortcut — Windows Platfor
	Changing the Startup Folder Using the startup.m File


	Startup Options
	Specifying MATLAB Startup Options
	Including Startup Options in a Shortcut on Windows Systems
	Specifying Startup Options in the MATLABStartup File

	Commonly Used Startup Options
	Passing Perl Variables on Startup
	Startup and Calling Java Software from the MATLAB Program

	Toolbox Path Caching in the MATLAB Program
	About Toolbox Path Caching in the MATLAB Program
	Using the Cache File Upon Startup
	Updating the Cache and Cache File
	How the Toolbox Path Cache Works
	When to Update the Cache
	Steps to Update the Cache
	Function Alternative

	Additional Diagnostics with Toolbox Path Caching

	Quitting the MATLAB Program
	Ways to Quit the MATLAB Program
	Confirm Quitting the MATLAB Program
	Running a Script When Quitting the MATLAB Program
	Abnormal Termination
	When the MATLAB Program Terminates Unexpectedly
	Error Log Reporting
	Recovering Data After an Abnormal Termination



	Desktop
	Desktop Overview
	About the Desktop
	Summary of Desktop Tools

	Opening and Arranging Desktop Tools
	Opening Desktop Tools
	Navigating Among Desktop Tools and Documents
	Navigating Among Desktop Tools and Documents
	Making a Tool or Document the Active Window

	Closing Desktop Tools
	Resizing Desktop Tools
	Resizing Desktop Tools Using the Mouse
	Resizing Desktop Tools Using the Keyboard

	Moving Tools Within the Desktop
	Moving Tools Using the Mouse
	Moving Tools Using the Keyboard

	Undocking Tools to Move Them Outside the Desktop
	Moving Undocked Tools Back onto the Desktop
	Grouping Desktop Tools Together
	Maximizing Available Space on the Desktop
	Maximizing Tools Within the Desktop
	Minimizing Tools Within the Desktop

	Opening and Arranging Desktop Documents
	Opening Documents
	Example of Working with Documents on the Desktop

	Navigating Among Open Documents Using the Document Bar
	Making a Document Active

	Adjusting the Document Bar
	Positioning Documents
	Viewing One Document (Default)
	Viewing All Open Documents, Layered on Top of One Another
	Viewing Documents, Side-By-Side
	Viewing Open Documents, One Above the Other
	Viewing Open Documents, Tiled Within the Tool
	Viewing a Subset of Open Documents, Tiled Within the Tool
	Replacing a Tiled Document with an Out-Of-View Document

	Moving and Resizing Documents
	Closing Documents
	Moving Documents Outside of the Desktop (Undocking)
	Docking Documents and Tools
	Grouping Documents in a Tool Outside the Desktop

	Managing Desktop Layouts
	Overview of Desktop Layouts
	Saving a Desktop Layout
	Reusing a Saved or Predefined Desktop Layout
	Renaming a Saved Desktop Layout
	Deleting a Saved Desktop Layout
	Restoring the Default Desktop Layout

	Examples of Desktop Arrangements
	About These Examples
	Tool Outside of Desktop and Other Tools Grouped Inside Desktop E
	Maximized Tool in Desktop Example
	Minimized Tools in Desktop Example
	Tiled Documents in Desktop Example
	No Empty Document Tiles Example
	Maximized Documents Outside of the Desktop Example
	Floating (Cascaded) Figures in Desktop Example
	Undocked Tools and Documents Example

	Running Frequently Used Statement Groups with MATLAB Shortcuts
	What Is a MATLAB Shortcut?
	When to Use MATLAB Shortcuts
	Creating MATLAB Shortcuts — Tutorials
	Creating MATLAB Start Button Shortcuts
	Creating MATLAB Toolbar Shortcuts

	Running MATLAB Shortcuts
	Editing and Organizing MATLAB Shortcuts
	Customizing MATLAB Toolbar Shortcuts
	Default Toolbar Shortcuts
	Hiding MATLAB Shortcut Labels on the Toolbar
	Displaying Hidden MATLAB Shortcut Labels on the Toolbar
	Deleting MATLAB Shortcuts from the Toolbar
	Alternative Ways to Create MATLAB Shortcuts


	Performing Desktop Actions Using the Keyboard
	Keyboard Key Combinations
	What Is a Mnemonic?
	Using Mnemonics
	What Is a Keyboard Shortcut?
	Examples of Mnemonics and a Keyboard Shortcut


	Performing Desktop Actions Using Keyboard Shortcuts
	Overview of Keyboard Shortcuts
	Choosing a Set of Keyboard Shortcuts
	Installed Settings Files for Keyboard Shortcuts
	Browsing to Keyboard Shortcuts Settings Files
	Downloading Keyboard Shortcut Settings Files from File Exchange 

	Comparing Sets of Keyboard Shortcuts
	Steps for Comparing Keyboard Shortcuts
	Reading the Results of Comparing Sets of Keyboard Shortcuts

	Displaying Keyboard Shortcuts
	Listing All Keyboard Shortcuts in a Set
	Displaying Keyboard Shortcuts on Menus
	Displaying Keyboard Shortcuts in the Preferences Dialog Box

	Customizing Keyboard Shortcuts
	Steps for Customizing Keyboard Shortcuts
	Restoring Default Keyboard Shortcut Sets
	Saving Keyboard Shortcuts to a Settings File
	Filtering Keyboard Shortcut Actions
	Specifying Keystrokes for a Keyboard Shortcut

	Evaluating and Resolving Keyboard Shortcut Conflicts
	Actions in Different Tools Have the Same Shortcut — Evaluating C
	Actions in the Same Tool Have the Same Shortcut — Evaluating Con
	Resolving Keyboard Shortcut Conflicts

	Examples of Creating, Modifying, and Deleting Keyboard Shortcuts
	Creating a New Keyboard Shortcut
	Changing a Keyboard Shortcut
	Deleting a Keyboard Shortcut

	Deleting a Set of Keyboard Shortcuts
	Using Keyboard Shortcuts Settings Files Created on Other Systems
	Keyboard Shortcut Restrictions
	Tools for Which You Cannot Customize Keyboard Shortcuts
	Actions for Which You Cannot Customize Keyboard Shortcuts


	Accessing Tools with the Start Button
	Viewing Products and Tools with the Start Button
	Identifying Start Button Menu Icons

	Adding Your Own Toolboxes to the Start Button
	More About Adding Items to the Start Button


	Using Web Browsers in MATLAB
	About Web Browsers in MATLAB
	MATLAB Web and Help Browsers
	System Browser

	Displaying Pages in Web Browsers
	Web Preferences
	Specifying Proxy Server Settings
	Specifying the System Browser for UNIX Platforms
	Specifying Fonts for the MATLAB Web Browser


	Other Features for Managing the Desktop
	Using Menus and Context Menus
	Understanding Merged Menus
	Context Menus

	Using Toolbar Features
	Viewing and Changing the Current Folder in the Desktop Toolbar

	Viewing Status in the Status Bar
	Sizing, Arranging, and Sorting Columns in Desktop Tools
	Selecting Multiple Items
	Cut, Copy, Paste, and Move
	Drag and Drop

	Printing and Page Setup Options for Desktop Tools
	Specifying Page Setup Options
	Layout Options for Page Setup
	Header Options for Page Setup
	Fonts Options for Page Setup

	Accessing MathWorks on the Web

	Managing Your Licenses
	Check for Updates
	Specifying Options for MATLAB Using Preferences
	Setting Preferences for MATLAB
	Function Alternative

	Summary of Preferences
	Where MATLAB Stores Preferences
	The Path to and File Name for the Preferences Folder
	Effects of Changing Preferences
	Effects of Installation and Deinstallation on the Preferences Fo

	Preferences Folder and Files MATLAB Uses When Multiple MATLAB Re
	Process MATLAB Uses to Create and Migrate the Preferences Folder
	Controlling the Preferences Files MATLAB Uses


	Setting General Preferences for the MATLAB Application
	General Preferences
	Toolbox Path Caching
	Figure Window Printing
	Deleting Files

	MAT-Files Preferences
	Confirmation Dialogs Preferences
	Source Control Preferences
	Java Heap Memory Preferences

	Customizing the Desktop Using Preferences
	Setting Keyboard Preferences for Desktop Tools
	Setting Tab Completion Preferences
	Setting Function Hints Preferences
	Setting Delimiter Matching Preferences

	Setting Fonts Preferences for Desktop Tools
	Desktop Fonts Preferences
	Factory Default Font Settings
	See Also

	Custom Fonts Preferences
	Changing the Font — Example
	Antialiasing for Desktop Fonts on Linux and UNIX Platforms
	Making Fonts Available to MATLAB Tools on Windows Platforms

	Setting Colors Preferences
	Setting Colors Used in Desktop Tools
	Desktop Tool Colors
	MATLAB Syntax Highlighting Colors
	Other Colors
	See Also

	Setting Color Preferences for Programming Tools
	Code Analyzer Colors
	Variable and Function Highlighting Colors
	Cell Display Options

	Setting Toolbars Preferences for Desktop Tools

	Accessibility
	Software Accessibility Support
	Documentation Accessibility Support
	Accessing the Documentation
	Navigating the Documentation
	Products
	Documentation Modifications
	Equations

	Assistive Technologies
	Tested Assistive Technologies
	Use of Other Assistive Technologies

	Installation Notes for Accessibility Support
	Setting Up JAWS Software
	Testing

	Troubleshooting
	JAWS Software Does Not Detect When Installation of the MATLAB So
	JAWS Software Stops Speaking
	Command Output Not Read
	Some GUI Menus Are Treated as Check Boxes
	Text Ignored in Some GUIs


	Macintosh Platform — Differences
	GUI Conventions in the Documentation and Macintosh Platforms
	Pointer Device Instructions and Macintosh Platforms
	Using File Browser GUIs on Macintosh Platforms to Navigate Withi


	Running Functions — Command Window and History
	Using the Command Window
	About the Command Window
	Opening the Command Window
	Using the Command Window Prompt
	Changing How the Command Window Looks

	Running Functions and Programs, and Entering Variables
	Running Statements at the Command-Line Prompt
	Entering Variables and Running Functions
	Running MATLAB Program Files Not Provided by MathWorks
	Examining Errors
	Order of Processing

	Stopping Execution
	Running External Programs
	Running UNIX Programs That Are Off the System Path

	Evaluating or Opening a Selection
	Function Alternatives

	Displaying Hyperlinks in the Command Window
	Creating Hyperlinks to Web Pages
	Transferring Files Using FTP
	Running MATLAB Functions from Hyperlinks


	Entering Statements in the Command Window
	Case and Space Sensitivity
	Upper and Lowercasing for Variables, Files, and Functions
	Spaces in Expressions

	Cut, Copy, Paste, and Undo Features
	Entering Multiple Lines Without Running Them
	Entering Multiple Functions in a Line
	Entering Multiple-Line (Long) Statements Using Line Continuation
	Recalling Previous Lines in the Command Window
	Navigating Above the Command Line
	See Also

	Assistance While Entering Statements
	Highlighting Syntax to Help Ensure Correct Entries
	Matching Delimiters (Parentheses)
	Completing Statements in the Command Window — Tab Completion
	Basic Example — Unique Completion
	Multiple Possible Completions
	Tab Completion for Folders and File Names
	Tab Completion for Class Folders and File Names
	Tab Completion for Structures
	Tab Completion for Handle Graphics Properties
	Tab Completion for MATLAB Objects

	Viewing Function Syntax Hints While Entering a Statement
	What Are Function Hints?
	Basic Steps for Using Function Hints
	Interpreting Function Hints
	Getting More Information While Using Function Hints
	Modifying Statements While Using Function Hints
	Closing the Pop-Up Window
	Enabling or Disabling Function Hints

	Getting Help for a Function Shown in the Command Window or Edito
	Finding Functions Using the Function Browser
	What Is the Function Browser?
	Basic Steps for Using the Function Browser
	Interpreting Search Results in the Function Browser
	Viewing the Full Reference Page from the Function Browser
	Repeating a Search
	Customizing the Function Browser

	See Also

	Controlling Output in the Command Window
	Echoing Execution
	Suppressing Output
	Paging of Output in the Command Window
	Formatting and Spacing Numeric Output
	Function Alternative
	Examples of Formats
	Controlling Spacing

	Number of Characters in Command Window Display
	Clearing the Command Window
	Function Alternative

	Printing Command Window Contents
	Keeping a Session Log
	The diary Function
	Other Session Logs


	Finding Text in the Command Window
	Introduction
	Finding Text Currently Displayed in the Command Window
	Increasing the Amount of Information Available for Searching in 
	Using Incremental Search in the Command Window
	Example of Using Incremental Search
	Summary of Keyboard Shortcuts for Incremental Searches
	Case Sensitivity in Incremental Searches


	Preferences for the Command Window
	Text, Display, Accessibility, and Tab Size Preferences
	Text Display
	Display
	Accessibility
	Tab key

	Additional Settings That Affect the Command Window

	Using the Command History Window
	Overview of the Command History Window
	Command History File

	Viewing Statements in the Command History Window
	Performing Actions on Statements in the Command History Window
	Searching in the Command History Window
	Finding Next Entry By Letter
	Finding Text

	Printing the Command History Window
	Deleting Entries from the Command History Window

	Preferences for Command History
	Overview of Command History Preferences
	Settings
	Save Exit/Quit Commands
	Save Consecutive Duplicate Commands

	Saving
	Save History File On Quit
	Save After n Commands
	Don’t Save History File

	See Also


	Getting Help and Product Information
	Overview of Help
	Using the Help Browser
	About the Help Browser
	Opening the Help Browser
	Using the Help Navigator

	Getting Help for Functions and Blocks
	Help for Functions and Blocks
	Help for Overloaded Functions

	Accessing a Specific Page
	Bookmarking Favorite Pages
	Getting the Link to a Page

	See Also

	Searching the Documentation
	Performing a Simple Search
	Improving Search Results
	Too Many Search Results?
	Too Few Search Results?
	Using Search Hints
	Using Search History
	Additional Guidelines for Searching

	Advanced Search Techniques
	Searching for an Exact Phrase
	Searching for Part of a Word — Using Wildcards
	Limiting Search to Certain Products
	Finding Any of the Words — Boolean OR
	Excluding Results That Contain Specified Words — Boolean NOT
	Using Multiple Boolean Operators
	Searching for Special Characters and Symbols

	Searching Within a Page
	Using Highlighted Search Words
	Using the Find Tool


	Learning from Demos
	About Demos
	Types of Demos
	Accessing Demos
	Running Demos

	Configuring the Help Browser
	Adjusting the Help Browser Layout
	Specifying Which Documentation to Display
	Accessing English Documentation on Japanese Systems
	Customizing Help Browser Fonts and Colors
	Specifying the Font Name, Style, and Size
	Specifying Text and Background Colors

	Preferences for Configuring Help Windows, Search History, and PD
	Specifying Where Help from the Editor and Function Browser Displ
	Specifying a Search History Limit
	Specifying the PDF Reader Location — UNIX Platforms Only


	Using Printed Documentation
	Printing from the Help Browser
	Accessing and Printing PDF Documentation
	Obtaining Printed Manuals

	Additional Help and Learning Resources
	Obtaining Information About your Installation
	Obtaining Technical Support
	Product Documentation at the MathWorks Web Site
	Obtaining Documentation in Different Languages

	Newsgroup for MathWorks Products
	File Exchange — Files Created By Other Users
	Blogs for MathWorks Products
	Newsletters for MathWorks Products
	Seminars and Webinars for MathWorks Products
	Training for MathWorks Products


	Customizing Help and Demos
	Getting Help for Files Created by Others
	About Help for Files Created by Others
	Getting Command-Line Help for Externally Supplied Program Files
	Viewing a Help Summary for Externally Supplied Files
	Accessing Help for Externally Supplied Class Files
	Accessing Externally Supplied Documentation in the Help Browser
	Accessing Externally Supplied Demos in the Help Browser

	Providing Your Own Help and Demos
	About Providing Help and Demos
	Adding Help for Your Program Files
	Providing Help Within a Program File
	Creating a Help Summary for Your Program Files
	Adding Help for Classes You Create

	Adding HTML Help Files to the Help Browser
	Types of Documentation You Can Provide
	Learning to Add Help from Examples
	Summary of Creating and Installing HTML Help Files
	Organizing Your Documentation
	Creating Function Reference Pages
	Creating Function and Block Category Listings
	Making Your HTML Help Files Searchable
	Summary of Workflow for Providing HTML Help Files


	Adding Demos to the Help Browser
	About Creating Demos
	How to Add Demos
	Workflow for Providing Demos
	More About the demos.xml File

	Providing Demos to Others

	Addressing Validation Errors for info.xml Files
	About XML File Validation
	Entities Missing or Out of Order in info.xml
	Unrelated info.xml File
	Invalid Constructs in info.xml File
	Outdated info.xml File for a MathWorks Product


	Workspace Browser and Variable Editor
	MATLAB Workspace
	About the Workspace
	Opening the Workspace Browser
	Viewing and Editing Values in the Current Workspace
	Function Alternative

	Saving the Current Workspace
	Saving All Variables
	Saving Selected Variables
	Specifying the Format When Saving MAT-Files
	Function Alternative

	Viewing and Loading a Saved Workspace and Importing Data
	Viewing Variables in MAT-Files and Loading Them into the Workspa
	Importing Data
	Function Alternative for Loading Variables

	Changing and Copying Variable Names
	Deleting Workspace Variables
	Function Alternative

	Viewing Base and Function Workspaces Using the Stack
	Creating Plots from the Workspace Browser
	Working with the Plot Selector GUI
	Selecting Appropriate Variables
	Determining What Inputs a Graphing Function Needs
	Editing a Plot Selector Graphing Command
	For More Information

	Opening Variables and Objects for Viewing and Editing
	Setting Workspace Browser Preferences
	Specify Maximum Array Size on Which to Compute Statistics
	Handling NaN Values in Calculations


	Viewing and Editing Workspace Variables with the Variable Editor
	About the Variable Editor
	Opening the Variable Editor
	Keyboard Alternatives

	Working with Different Types of Data in the Variable Editor
	Cell Arrays — Viewing and Editing in the Variable Editor
	Structures — Viewing and Editing in the Variable Editor
	Objects and Their Properties — Viewing and Editing in the Variab
	Multidimensional Arrays — Viewing in the Variable Editor

	Navigating and Editing Shortcut Keys for the Variable Editor
	Changing Size, Content, and Format of Variables in the Variable 
	Cut, Copy, Paste, and Clear Contents in the Variable Editor
	Example: Copying and Pasting Array Elements
	Example: Cutting and Pasting Array Elements

	Other Variable Editor Operations
	Insert and Delete in the Variable Editor
	Undo and Redo in the Variable Editor
	Exchanging Data with the Command Window
	Creating New Workspace Variables from the Variable Editor
	Exchanging Data with the Microsoft Excel Application

	Creating Graphs and Variables, and Data Brushing in the Variable
	Generating Graphs Automatically
	Brushing Data in Linked Graphs

	Preferences for the Variable Editor
	Format
	Editing
	International Number Handling



	Managing Files in MATLAB
	Introduction to Managing Files in MATLAB
	Ways to Manage MATLAB Files
	Tools for Managing Files

	Understanding File Locations in MATLAB
	Important MATLAB Folders
	The Current Folder
	matlabroot
	The Startup Folder
	Locations of MathWorks Products
	Locations for Storing Your Files

	Path Names in MATLAB
	Specifying Path Names on Macintosh Systems
	Specifying File Separator Characters, / and \
	Specifying Absolute and Relative Path Names
	Maximum Length of Path Names in MATLAB
	Constructing Path Names on Different Platforms
	Including Spaces in Path Names
	Partial Path Names in MATLAB
	See Also


	Working with Files and Folders
	Viewing Folder Contents
	Opening the Current Folder Browser
	Preferences for the Current Folder Browser
	Refreshing the List of Files
	Viewing Hidden Files and Folders
	Controlling the Appearance of Files Inaccessible to MATLAB
	Using Functions to Get Details About Files and Folders

	Using the Current Folder Browser
	Customizing the Column Display
	Viewing File Descriptions
	Viewing File Details Without Opening Files
	Viewing Help for a MATLAB Program File
	Sorting and Grouping Files and Folders


	Finding Files and Folders
	Finding Files and Folders by Name in the Current Folder
	Simple Search for File and Folder Names in the Current Folder Br
	Steps for Using the Search Field

	Advanced Search for Files — Find Files Tool
	Steps for Using the Find Files Tool
	Opening Files from the Results List
	Accessing Previous Results
	Skipping File Types

	Locating a File or Folder in the Operating System Browser
	Finding Files and Folders Using Functions
	Additional Ways to Find Files

	Creating, Opening, Changing, and Deleting Files and Folders
	Creating New Files and Folders
	Creating Files and Folders with the Current Folder Browser
	Creating and Updating MAT-Files with the Current Folder Browser
	Creating and Managing Zip File Archives
	Creating Files and Folders Using Functions

	Copying, Renaming, and Deleting Files and Folders
	Renaming Files Using the Current Folder Browser
	Renaming Files and Folders Using Functions
	Deleting Files and Folders Using the Current Folder Browser
	Deleting Files and Folders Using Functions
	Copying and Moving Files and Folders
	Changing Properties of Files and Folders

	Opening and Running Files
	Opening Files and Importing Data Using the Current Folder Browse
	Opening Files Using the Current Folder Browser
	Opening Files Using Functions
	Running MATLAB Program Files from the Current Folder Browser


	Comparing Files and Folders
	Comparing Files and Folders
	Select Files or Folders to Compare
	Choose Comparison Type
	Explore Comparison Report

	Comparing Text Files
	Highlighting of Differences
	Stepping Through Differences
	Viewing a Summary of Differences
	Hide Whitespace Differences in Text Comparisons
	Increasing or Decreasing Line Lengths Shown for Text Files
	Save HTML Report

	Comparing Files with Autosave Version or Version on Disk
	Comparing MAT-Files
	Comparing Binary Files
	Comparing Folders and ZIP Files
	Folder Comparison Report
	Highlighting of Differences
	Next Steps Using the Report

	Using Features of the Comparison Tool
	Selecting Files or Folders to Compare from the Comparison Tool
	Exchanging the Left and Right Sides of the Report
	Refreshing the Report to Show Updated Files
	Finding Text
	Viewing New Comparisons
	Viewing Previous Comparisons

	Function Alternative for Comparing Files and Folders

	Making Files and Folders Accessible to MATLAB
	Files and Folders That MATLAB Can Access
	How to Make Files Accessible
	Basic Options for Making Files Accessible
	All Options for Making Files Accessible

	Determining if MATLAB Can Access a File
	Ensuring MATLAB Uses the File You Want
	About Name Conflicts and Shadowed Files
	Detecting and Addressing Name Conflicts
	See Also


	Using the MATLAB Search Path
	What Is the Search Path?
	What Is on the Search Path?
	Order of Folders on the Search Path
	Relationship Between the Search Path and the System Path
	How MATLAB Stores the Search Path

	Viewing Files and Folders on the Search Path
	Using the Current Folder Browser
	Using the Set Path Dialog Box

	Changing the Search Path
	Adding Folders to the Search Path
	Removing Folders from the Search Path
	Changing the Order of Folders on the Search Path
	Saving Changes to the Search Path

	Using the Search Path with Different MATLAB Installations
	Using the Search Path with Different Versions
	Using the Search Path with Different Platforms

	Recovering from Problems with the Search Path
	Handling Errors and Unexpected Behavior When Updating Folders

	Related Topics for Managing Files

	File Exchange — Finding and Getting Files Created by Other Users
	Before Using File Exchange
	What Is File Exchange?
	What You Need to Use File Exchange
	Ways to Access the File Exchange Repository
	When to Use the Desktop Tool
	When to Use the Web Interface


	How To Use the File Exchange Desktop Tool
	Steps for Using File Exchange
	Example — Finding and Downloading a File in File Exchange

	Finding Files in File Exchange — Searching and Using Tags
	About Finding Files in File Exchange
	Using Search to Find Files in File Exchange
	Syntax for Search Words

	Finding Files by Product, Author, and Other Attributes in File E
	Using Tags to Find Files in File Exchange
	What Are Tags?
	Ways to View Tags
	Finding Files Using Tags
	Example — Using Tags to Find Files in File Exchange
	Applying a Tag to a File
	Adding a New Tag to a File

	Clearing Your Criteria
	Getting Better Results Using Search and Tags

	Viewing and Sorting the List of Files in File Exchange
	Viewing the List of Files in File Exchange
	Viewing the Default List of Files
	Viewing the List of Files that Match Your Criteria

	Sorting the List of Files in File Exchange
	Sorting by Number of Downloads


	Viewing Details About a File
	Viewing the File Details Page
	Viewing the Contents of a File

	Downloading Files from the File Exchange Repository
	About Downloading Files
	Downloading from the List of Files
	Downloading from the File Details Page to a Location You Choose
	The Default Folder for Downloaded Files
	Which Location Should You Choose When Downloading Files?
	Downloading a Submission that Consists of Multiple Files
	Why You Might See Multiple Folders for One Download

	Viewing and Locating Files You Downloaded
	Viewing a Log of Files You Downloaded
	Locating a File You Downloaded
	Viewing Details for a File You Downloaded
	Clearing the Download History


	Best Practices for Using Files Provided by Other Users
	Ensure MATLAB Can Access the File
	Consult the File Details Page
	Look for Updates to the File
	Read the File
	Ask Questions

	Contributing to the File Exchange Repository
	How You Can Contribute to the Repository
	Adding Tags to a File
	Removing Tags from a File
	Rating a File
	Providing Comments About a File
	Submitting Your Files to the Repository

	Frequently Asked Questions About File Exchange
	What Is File Exchange?
	How Do I Use File Exchange?
	How Does the File Exchange Desktop Tool Relate to File Exchange 
	Why Do I See Only 50 Files and How Can I See More?
	What Are Tags and How Do I Use Them?
	What Are the Tags Above the List of Files?
	How Can I See Other Tags?
	Why Are the Tags Changing?
	Is Search Looking Inside Files?
	How Can I Start Over When Looking for Files?
	How Can I Choose Where to Download a File To?
	How Do I Contribute My Files to the Repository?


	Editing and Debugging MATLAB Code
	MATLAB Code Files
	What Are MATLAB Code Files?
	Creating Files from the Command Window and Command History
	Use Existing MATLAB Code and Examples
	MATLAB and Toolbox Functions
	Demos and Examples
	File Exchange


	Ways to Edit, Evaluate, and Debug Code
	Starting, Creating Files, and Closing the Editor
	Starting the Editor
	Creating New Files in the Editor
	Function Alternative for Creating New Files

	Opening Existing Files Using the Editor
	MATLAB Code Cells in Files

	Arranging Editor Documents
	Closing the Editor

	Customizing the Editor by Setting Preferences
	Overview of Setting Editor/Debugger Preferences
	Setting General Preferences for the Editor/Debugger
	Editor
	Most Recently Used File List
	Opening Files in the Editor
	Automatic File Changes

	Setting Display Preferences
	General Display Options
	Right-Hand Text Limit

	Setting Tab and Indent Preferences
	Tabs and Indents
	See Also

	Setting Language Preferences
	File Extensions

	Setting MATLAB Language Preferences
	Syntax highlighting
	Comment Formatting
	Indenting
	File extensions

	Setting TLC Language Preferences
	Syntax highlighting
	File Extensions

	Setting VHDL Language Preferences
	Syntax highlighting
	File extensions

	Setting Verilog Language Preferences
	Syntax highlighting
	File extensions

	Setting C/C++ Language Preferences
	Syntax highlighting
	Indenting
	File extensions

	Setting Java Language Preferences
	Syntax highlighting
	Indenting
	File extensions

	Setting XML/HTML Language Preferences
	Syntax highlighting
	Indenting
	File extensions

	Setting Code Folding Preferences
	Enable Code Folding
	Enable Code Folding by Programming Construct
	Fold Initially

	Setting Autosave Preferences
	Enable autosave in the MATLAB Editor
	Save Options
	Close Options
	Filename
	Location

	Additional Information About Editor/Debugger Preferences

	Entering Statements in the Editor
	Using Command Window Features in the Editor
	Entering Text in Insert or Overwrite Mode
	Determining the Current Typing Mode
	Toggling Between Insert and Overwrite Mode

	Changing the Case of Selected Text
	Undoing and Redoing Editor Actions
	Adding Comments
	Commenting in MATLAB Code Using the MATLAB Editor
	Commenting in Java and C/C++ Files Using the MATLAB Editor
	Commenting in MATLAB Code Using Any Text Editor
	Commenting Out Part of a Statement
	Wrapping Comments in MATLAB Code

	Completing Statements in the Editor — Tab Completion
	Basic Example — Unique Completion
	Multiple Possible Completions
	Narrowing Completions Shown
	Tab Completion for Structures
	Tab Completion for Properties
	Using Tab for Spacing


	Making MATLAB Code Files More Readable
	Syntax Highlighting
	Indenting
	Enabling Automatic Indenting
	Manually Applying Indenting

	Function Indenting
	Line and Column Numbers
	Highlight Current Line
	Right-Side Text Limit
	Class, Function, or Subfunction
	Code Folding — Expanding and Collapsing File Constructs
	Viewing Folded Code in a Tooltip
	Code Folding Behavior and Preferences

	Displaying Two Parts of a File Simultaneously
	Splitting the Screen Display


	Navigating an Open File in the Editor
	Navigating to a Specific Location
	Using Bookmarks
	Navigating Backward and Forward in Files
	Interrupting the Sequence of Go Back and Go Forward

	Opening a File or Variable from Within a File

	Finding Text in Files
	Finding Any Text in the Current File
	Finding and Replacing Functions or Variables in the Current File
	Finding and Replacing Any Text
	Finding Text in Multiple File Names or Files
	Function Alternative for Finding Text
	Performing an Incremental Search in the Editor

	Saving, Printing, and Closing Files in the Editor
	Saving Files
	Recommendations on Saving Files
	Autosaving Files

	Printing Files
	Closing Files

	Running MATLAB Files in the Editor
	Running Files with No Input Arguments in the Editor
	Using Run Configurations to Run Files with Input Arguments in th
	Create and Use a Run Configuration
	Create and Execute Multiple Run Configurations for a File
	About the run_configurations.m File
	Find Configurations
	Remove Configurations
	Reassociate and Rename Configurations
	Other Ways to Run Files from the Editor

	Finding Errors, Debugging, and Correcting MATLAB Files
	Preventing and Identifying Coding Problems
	Ways to Prevent and Check for Coding Problems
	Code Analysis Options
	Automatically Analyzing Code in the Editor
	Suppressing Message Indicators and Messages
	Setting Code Analyzer Preferences
	Underlining
	Autofix
	Filtering Messages
	Example of Filtering Messages
	Saving Settings
	Using Saved Settings
	Default Settings
	Distinguishing Function Names from Variable Names
	Distinguishing Structures from Handle Objects
	Distinguishing Built-In Functions from Overloaded Functions
	Determining the Size or Shape of Variables
	Analyzing Class Definitions with Superclasses
	Analyzing Methods


	Determining Scope and Usage of Functions and Variables
	Using Automatic Function and Variable Highlighting
	Example of Using Automatic Function and Variable Highlighting


	Debugging Process and Features
	Ways to Debug MATLAB Files
	Preparing for Debugging
	Debugging Example — The Collatz Problem

	Setting Breakpoints
	Setting Standard Breakpoints
	Function Alternative for Setting Breakpoints

	Running a File with Breakpoints
	Running the Example
	Results of Running a File Containing Breakpoints

	Stepping Through a File
	Continue Running in the Example
	Stepping into the Called Function in the Example

	Examining Values
	Selecting the Workspace
	Viewing Values as Data Tips in the Editor
	Viewing Values in the Command Window
	Viewing Values in the Workspace Browser and Variable Editor
	Evaluating a Selection
	Examining Values in the Example
	Problems Viewing Variable Values from the Parent Workspace

	Correcting Problems and Ending Debugging
	Changing Values and Checking Results
	Ending Debugging
	Disabling and Clearing Breakpoints
	Saving Breakpoints
	Correcting Problems in a MATLAB File
	Completing the Example
	Running Sections in MATLAB Files That Have Unsaved Changes

	Using Conditional Breakpoints
	Setting Conditional Breakpoints
	Modifying, Disabling, and Clearing Conditional Breakpoints
	Function Alternatives for Manipulating Conditional Breakpoints

	Breakpoints in Anonymous Functions
	Breakpoints in Methods That Overload Functions
	Error Breakpoints
	Setting and Clearing Error Breakpoints
	Error Breakpoint Types and Options
	Examples of Setting Warning and Error Breakpoints
	Function Alternative for Manipulating Error Breakpoints


	Evaluating Subsections of Files Using Code Cells
	What Are Code Cells?
	Scenarios for Evaluating Sections of Code
	Process for Evaluating Sections of Files
	Defining Code Cells
	Defining Code Cell Boundaries Explicitly
	Creating Titles for Code Cells
	Highlighting Code Cells
	Example of Defining Code Cells
	Fixing Code Cell Highlighting Problems
	Removing Code Cells
	Summary of Cell Mode and Code Cell Requirements

	Understanding Nested Code Cells
	File Without Explicit Code Cell Breaks
	How Nesting Code Cell Breaks Result in Cells
	Example File with Nested Code Cell Breaks
	Associating Code Cell Breaks with Subfunctions

	Navigating Among Code Cells in a File
	Evaluating Code Cells
	Evaluating Code Cells in a File
	Processing Considerations When Evaluating Code Cells
	Modifying Values in a Code Cell
	Example of Evaluating Code Cells


	Debugging Functions

	Tuning and Managing MATLAB Code Files
	Using MATLAB Reports
	Refining and Improving Files Using Reports
	Accessing Reports
	Using Reports

	Identifying Files with Reminder Annotations
	Working with TODO/FIXME Reports

	Generating a Summary View of the Help Components in Functions an
	Working with Help Reports

	Displaying and Updating a Report on the Contents of a Folder
	Working with Contents Reports
	Messages in the Contents File Report
	Creating a New Contents.m File to Reflect All Files in the Curre

	Displaying Dependencies Among MATLAB Code Files
	Creating Dependency Reports
	Reading and Working with Dependency Reports

	Identifying How Much of a File Ran When Profiled

	Using the Code Analyzer Report
	Running the Code Analyzer Report
	Changing Code Based on Messages
	Other Ways to Access Messages

	Profiling for Improving Performance
	What Is Profiling?
	Profiling Process and Guidelines
	Using Profiling as a Debugging Tool
	Using Profiling to Understand an Unfamiliar File

	Using the Profiler
	Opening the Profiler
	Running the Profiler
	Profiling a Graphical User Interface
	Profiling Statements from the Command Window
	Changing Fonts for the Profiler

	Profile Summary Report
	Profile Detail Report
	Opening the Profile Detail Report
	Controlling the Contents of the Detail Report Display
	Profile Detail Report Header
	Parent Functions
	Busy Lines
	Child Functions
	Code Analyzer Results
	File Coverage
	Function Listing

	The profile Function
	Example: Using the profile Function
	Accessing profile Function Results
	Saving profile Function Reports
	Using the profile Function to Change the Time Type Used by the P



	Publishing MATLAB Code
	Overview of Publishing MATLAB Code
	What Is Meant by Publishing MATLAB Code?
	Using Code Cells
	Process for Publishing MATLAB Code
	Example of Published MATLAB Code
	Sample File Before Adding Markup
	Published Sample File Before Adding Markup
	Published Sample File After Adding Markup

	Adding the Markup for the Example
	MATLAB Code After Text Markup


	Marking Up MATLAB Comments for Publishing
	Overview of Marking Up MATLAB Comments for Publishing
	Creating Document Titles and Introductory Text for Publishing an
	Specifying a Title for the New Section that the Editor Inserts w
	Creating New Section Titles

	Specifying Preformatted Text in MATLAB Files for Publishing
	Specifying Bulleted or Numbered Lists in MATLAB Files for Publis
	Specifying Graphics in MATLAB Files for Publishing
	Valid Image Types for Output File Formats
	Creating the surfpeaks.png Image

	Using HTML Markup Tags in MATLAB Files for Publishing
	Using LaTeX Markup for Publishing
	Including Inline LaTeX Math Symbols in MATLAB Files for Publishi
	Including Blocks of LaTeX Math Symbols in MATLAB Files for Publi
	Forcing a Snapshot of Output in MATLAB Files for Publishing
	Including Bold, Italic, and Monospaced Text in MATLAB Files for 
	Marking Up Existing Comments with Font Formats
	Inserting New Comments with Font Formats
	Example of Font Formats

	Including Trademarks in MATLAB Files for Publishing
	Including Hyperlinks in MATLAB Files for Publishing
	Inserting Static Hyperlinks and Publishing URLs
	Inserting Static Hyperlinks Without Publishing URLs
	Inserting Dynamic Hyperlinks
	Effect of Copying Hyperlinked Text from the MATLAB Command Windo

	Cleaning Up Text Markup Before Publishing MATLAB Files
	Summary of Markup for Publishing MATLAB Files 

	Marking Up MATLAB Code for Publishing
	Overview of Marking Up MATLAB Code for Publishing
	Specifying the Display of Code Output
	Example of Marking Up Code
	Sample MATLAB File Before Inserting Mark Up in Code
	Sample MATLAB File After Inserting Cell Breaks in Code


	Specifying Output Preferences for Publishing
	About Publishing Configurations
	Publishing MATLAB Files Using No Input Arguments and Factory Def
	Using Publish Configurations to Publish MATLAB Files Using Input
	Function Alternative to Publishing

	Creating a Publish Configuration for a MATLAB File
	Specifying File Input Using a Publish Configuration
	Specifying Publish Configuration Settings
	Specifying Values for the Publish Settings Property Table
	Creating a Template for Typical Publish Settings

	Running an Existing Publish Configuration
	Creating Multiple Publish Configurations for a File
	Example of Publishing sine_wave_f.m to Microsoft Word
	Steps for Publishing sine_wave_f.m to HTML
	Steps for Publishing sine_wave_f.m to Microsoft PowerPoint
	Steps for Publishing sine_wave_f.m to PDF

	About the publish_configurations.m File
	Finding Publish Configurations
	Removing Publish Configurations
	Reassociating and Renaming Publish Configurations

	Summary of Options for Presenting Your Code to Others

	Creating a MATLAB Notebook to Publish to Microsoft Word
	About MATLAB Notebooks
	Contents of MATLAB Notebooks
	Creating or Opening a MATLAB Notebook
	Issuing the notebook Command from the MATLAB Desktop
	Creating a MATLAB Notebook
	Opening an Existing MATLAB Notebook
	Converting a Word Document to a MATLAB Notebook

	Entering Commands in a MATLAB Notebook
	Protecting the Integrity of Your Workspace in MATLAB Notebooks
	Ensuring Data Consistency in MATLAB Notebooks
	Debugging and MATLAB Notebooks

	Defining MATLAB Commands as Input Cells for a MATLAB Notebook
	Defining Input Cells for a MATLAB Notebook
	Defining Cell Groups for a MATLAB Notebook
	Creating a Cell Group

	Defining Autoinit Input Cells for a MATLAB Notebook
	Creating an Autoinit Cell for a MATLAB Notebook

	Defining Calc Zones for a MATLAB Notebook
	Creating a Calc Zone

	Converting an Input Cell to Text in a MATLAB Notebook

	Evaluating MATLAB Commands in a MATLAB Notebook
	Evaluating Input Commands
	Evaluating Cell Groups
	Evaluating a Range of Input Cells
	Evaluating a Calc Zone
	Evaluating an Entire MATLAB Notebook
	Controlling Execution of Multiple Commands

	Using a Loop to Evaluate Input Cells Repeatedly
	Converting Output Cells to Text
	Deleting Output Cells

	Printing and Formatting a MATLAB Notebook
	Printing a MATLAB Notebook
	Modifying Styles in the MATLAB Notebook Template
	Choosing Loose or Compact Format
	Controlling Numeric Output Format
	Controlling Graphic Output
	Embedding Graphic Output in a MATLAB Notebook
	Suppressing Graphic Output for Individual Input Cells
	Adjusting Graphic Output


	Configuring MATLAB notebook
	Notebook Feature Reference
	Bring MATLAB to Front
	Define Autoinit Cell
	Result
	Format
	See Also

	Define Calc Zone
	Result
	See Also

	Define Input Cell
	Result
	Format
	See Also

	Evaluate Calc Zone
	Result
	See Also

	Evaluate Cell
	Result
	See Also

	Evaluate Loop
	Evaluate M-Book
	Result
	See Also

	Group Cells
	Result
	See Also

	Hide Cell Markers
	Notebook Options
	See Also

	Purge Selected Output Cells
	See Also

	Toggle Graph Output for Cell
	See Also

	Undefine Cells
	See Also

	Ungroup Cells
	See Also



	Source Control Interface
	Source Control Interface on Microsoft Windows
	Setting Up the Source Control Interface on Microsoft Windows
	Create Projects in Source Control System
	Example of Creating Source Control Project

	Specify Source Control System with MATLAB Software
	Source Control with 64-Bit Versions of MATLAB
	Function Alternative for Specifying Source Control System

	Register Source Control Project with MATLAB Software
	Add Files to Source Control
	Function Alternative


	Checking Files Into and Out of Source Control from the MATLAB De
	Check Files Into Source Control
	Function Alternative

	Check Files Out of Source Control
	Function Alternative

	Undoing the Checkout
	Function Alternative


	Additional Source Control Actions on Microsoft Windows
	Getting the Latest Version of Files for Viewing or Compiling
	Function Alternative

	Removing Files from the Source Control System
	Function Alternative

	Showing File History
	Function Alternative

	Comparing the Working Copy of a File to the Latest Version in So
	Function Alternative

	Viewing Source Control Properties of a File
	Function Alternative

	Starting the Source Control System
	Function Alternative


	Performing Source Control Actions from the Editor, Simulink, or 
	Troubleshooting Source Control Problems on Microsoft Windows
	Source Control Error: Provider Not Present or Not Installed Prop
	Restriction Against @ Character
	Add to Source Control Is the Only Action Available
	More Solutions for Source Control Problems

	Source Control Interface on UNIX Platforms
	Specifying the Source Control System on UNIX Platforms
	MATLAB Desktop Alternative
	Function Alternative
	Setting a View and Checking Out a Folder with ClearCase Software

	Checking Files Into the Source Control System on UNIX Platforms
	Checking In One or More Files Using the Current Folder Browser
	Checking In One File Using the Editor, or the Simulink or Statef
	Function Alternative
	Example Using checkin Function


	Checking Files Out of the Source Control System on UNIX
	Checking Out One or More Files Using the Current Folder Browser
	Checking Out a Single File Using the Editor, or the Simulink or 
	Function Alternative
	Example Using checkout Function—Check Out a Specific Version of 


	Undoing the Checkout on UNIX Platforms
	Impact of Undoing a File Checkout
	Undoing the Checkout for One or More Files Using the Current Fol
	Undoing the Checkout for a Single File Using the Editor, or the 
	Function Alternative


	Internationalization
	How the MATLAB Process Uses Locale Settings
	Windows Platform-Specific Behavior
	Macintosh Platform-Specific Behavior

	Setting the Locale
	Setting Locale on Windows Platforms
	Setting User Locale on Windows 7 Platforms
	Setting System Locale on Windows 7 Platforms
	Setting User Locale on Windows Vista Platforms
	Setting System Locale on Windows Vista Platforms
	Setting User Locale on Windows XP Platforms
	Setting System Locale on Windows XP Platforms

	Setting Locale on Linux Platforms
	Setting User Locale and User UI Language
	Configuring Fonts to Display Asian Characters

	Setting Locale on Macintosh Platforms
	Setting User Locale
	Setting UI Language


	Troubleshooting I18n Messages and Settings
	Asian Characters Incorrectly Displayed on Linux Systems
	Characters Incorrectly Displayed on Windows Systems
	datenum Might Not Return Correct Value 
	Numbers Display Period for Decimal Point
	MATLAB Displays Messages in English
	File or Folder Names Incorrectly Displayed


	Index

	tables
	File Extension and Resulting Action


